A Fuzzy AHP-based trust management mechanism for self-sovereign identity in the metaverse

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Soft Computing Pub Date : 2025-03-15 DOI:10.1016/j.asoc.2025.112994
Xiaoling Song , Guangxia Xu , Yongfei Huang
{"title":"A Fuzzy AHP-based trust management mechanism for self-sovereign identity in the metaverse","authors":"Xiaoling Song ,&nbsp;Guangxia Xu ,&nbsp;Yongfei Huang","doi":"10.1016/j.asoc.2025.112994","DOIUrl":null,"url":null,"abstract":"<div><div>Self-sovereign identity (SSI) technology has advantages and potential for application in the metaverse. However, the decentralization and anonymous interaction of SSI create convenience for malicious attacks, frauds, and conspiracies in the metaverse. It leads to various trust risks and threats to the meta-universe system. To address these challenges, we analyze the risks of SSI systems and constructed a reputation index system. Moreover, we propose a blockchain-based reputation management framework (BBRMF), which can constrain users from engaging in illegal activities such as forgery, fraud, and conspiracy, thereby guaranteeing the security and trustworthiness of the entities involved in the metaverse. In BBRMF, we constructed a reputation evaluation model based on fuzzy analytical hierarchy process (FAHP) to assess the user’s reputation in three dimensions: reliability, trustworthiness and security. To motivate users to accumulate more positive reputation, we set the user’s reputation score into a reputation credential in the form of non-fungible token (NFT), through which users can obtain more benefits and opportunities. Finally, we calculated the reputation value of SSI related entities from multiple perspectives through simulation experiments and comparative analysis. The feasibility of the proposed method is verified, and it is proved that it can effectively resist the interference and attack of malicious scoring nodes. Moreover, the scheme adopts multi-dimensional evaluation indexes and behavioral feature values, which significantly improves the comprehensiveness and accuracy of the reputation assessment. Meanwhile, the weights of the evaluation indexes are derived through objective calculation, ensuring the fairness of the evaluation results, and improving the credibility and repeatability of the reputation assessment.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"174 ","pages":"Article 112994"},"PeriodicalIF":7.2000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625003059","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Self-sovereign identity (SSI) technology has advantages and potential for application in the metaverse. However, the decentralization and anonymous interaction of SSI create convenience for malicious attacks, frauds, and conspiracies in the metaverse. It leads to various trust risks and threats to the meta-universe system. To address these challenges, we analyze the risks of SSI systems and constructed a reputation index system. Moreover, we propose a blockchain-based reputation management framework (BBRMF), which can constrain users from engaging in illegal activities such as forgery, fraud, and conspiracy, thereby guaranteeing the security and trustworthiness of the entities involved in the metaverse. In BBRMF, we constructed a reputation evaluation model based on fuzzy analytical hierarchy process (FAHP) to assess the user’s reputation in three dimensions: reliability, trustworthiness and security. To motivate users to accumulate more positive reputation, we set the user’s reputation score into a reputation credential in the form of non-fungible token (NFT), through which users can obtain more benefits and opportunities. Finally, we calculated the reputation value of SSI related entities from multiple perspectives through simulation experiments and comparative analysis. The feasibility of the proposed method is verified, and it is proved that it can effectively resist the interference and attack of malicious scoring nodes. Moreover, the scheme adopts multi-dimensional evaluation indexes and behavioral feature values, which significantly improves the comprehensiveness and accuracy of the reputation assessment. Meanwhile, the weights of the evaluation indexes are derived through objective calculation, ensuring the fairness of the evaluation results, and improving the credibility and repeatability of the reputation assessment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
期刊最新文献
A quantum entanglement-based optimization method for complex expensive engineering problems Data preprocessing techniques and neural networks for trended time series forecasting A multidimensional fitness function based heuristic algorithm for set covering problems A heuristic-based multi-stage machine learning-based model to design a sustainable, resilient, and agile reverse corn supply chain by considering third-party recycling A multi-branch attention coupled convolutional domain adaptation network for bearing intelligent fault recognition under unlabeled sample scenarios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1