Xiaocong Li , Liping Yang , Xue Kang , Guowei Wang , Yanping Yuan , Huan Yang , Tingting Yang , Zhenhai Wang
{"title":"TAK-242 attenuates NLRP3-ASC inflammasome-mediated neuroinflammation via TLR4/NF-κB pathway in rat experimental autoimmune neuritis","authors":"Xiaocong Li , Liping Yang , Xue Kang , Guowei Wang , Yanping Yuan , Huan Yang , Tingting Yang , Zhenhai Wang","doi":"10.1016/j.intimp.2025.114429","DOIUrl":null,"url":null,"abstract":"<div><div>The inhibition of the TLR4 receptor has been shown to protect neural structure and improve neurological functions in peripheral nervous system (PNS) diseases. There is a scarcity of research regarding the effect of inflammasomes during the process of neuroinflammation in immune related PNS disorders, such as, Guillain-Barré syndrome (GBS), even though it is an essential part for pathophysiology from immunological diseases that impact central nervous system (CNS). In this investigation, we found that TLR4 expression and formation and activation of the NLRP3 inflammasome were increased in the sciatic nerve of experimental autoimmune neuritis (EAN). Further intraperitoneal injection of the selective TLR4 receptor inhibitor TAK-242 (Resatorvid) showed that TAK-242 not only stopped the advancement of EAN to a certain extent, but also alleviated peripheral nerve injury brought on by EAN, as evidenced by improvements in body weight loss, neurological function scores, and nerve conduction deficits. More importantly, TAK-242 effectively inhibited neuroinflammation in EAN rats, mitigated myelin loss and helped the regeneration and repair of EAN peripheral nerve injury, mainly through suppressing TLR4/NF-κB signaling pathway and decreasing NLRP3 inflammasome activation. Based on these findings, administration of TAK-242 can be used as a potential therapy approach for GBS.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"153 ","pages":"Article 114429"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576925004199","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The inhibition of the TLR4 receptor has been shown to protect neural structure and improve neurological functions in peripheral nervous system (PNS) diseases. There is a scarcity of research regarding the effect of inflammasomes during the process of neuroinflammation in immune related PNS disorders, such as, Guillain-Barré syndrome (GBS), even though it is an essential part for pathophysiology from immunological diseases that impact central nervous system (CNS). In this investigation, we found that TLR4 expression and formation and activation of the NLRP3 inflammasome were increased in the sciatic nerve of experimental autoimmune neuritis (EAN). Further intraperitoneal injection of the selective TLR4 receptor inhibitor TAK-242 (Resatorvid) showed that TAK-242 not only stopped the advancement of EAN to a certain extent, but also alleviated peripheral nerve injury brought on by EAN, as evidenced by improvements in body weight loss, neurological function scores, and nerve conduction deficits. More importantly, TAK-242 effectively inhibited neuroinflammation in EAN rats, mitigated myelin loss and helped the regeneration and repair of EAN peripheral nerve injury, mainly through suppressing TLR4/NF-κB signaling pathway and decreasing NLRP3 inflammasome activation. Based on these findings, administration of TAK-242 can be used as a potential therapy approach for GBS.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.