{"title":"Shadows and photon spheres in static and rotating traversable wormholes","authors":"Takol Tangphati , Phongpichit Channuie , Kazuharu Bamba , Davood Momeni","doi":"10.1016/j.nuclphysb.2025.116876","DOIUrl":null,"url":null,"abstract":"<div><div>We explore the shadows and photon orbits of both static and rotating traversable wormholes by employing a redshift function in combination with two distinct shape functions. Using the null geodesic equation derived from the Euler-Lagrange formalism, we investigate the gravitational lensing effects and the motion of photons in strong gravitational fields. Our study presents numerical simulations of ray tracing and intensity profiles to examine the observational signatures of traversable wormholes. The results reveal that the shadows of rotating wormholes exhibit asymmetry due to frame-dragging effects, akin to those seen in Kerr black holes. Furthermore, we compare the properties of wormhole shadows and photon spheres to those of black holes, highlighting key differences that may serve as potential observational signatures. These findings provide insights into the feasibility of detecting traversable wormholes through high-resolution astrophysical observations and gravitational lensing studies.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1014 ","pages":"Article 116876"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321325000859","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
We explore the shadows and photon orbits of both static and rotating traversable wormholes by employing a redshift function in combination with two distinct shape functions. Using the null geodesic equation derived from the Euler-Lagrange formalism, we investigate the gravitational lensing effects and the motion of photons in strong gravitational fields. Our study presents numerical simulations of ray tracing and intensity profiles to examine the observational signatures of traversable wormholes. The results reveal that the shadows of rotating wormholes exhibit asymmetry due to frame-dragging effects, akin to those seen in Kerr black holes. Furthermore, we compare the properties of wormhole shadows and photon spheres to those of black holes, highlighting key differences that may serve as potential observational signatures. These findings provide insights into the feasibility of detecting traversable wormholes through high-resolution astrophysical observations and gravitational lensing studies.
期刊介绍:
Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.