Distinguishing between wild-caught and captive-bred Common Pheasant using methylation rate of skeletal muscle DNA

IF 1.6 2区 生物学 Q1 ORNITHOLOGY Avian Research Pub Date : 2025-03-07 DOI:10.1016/j.avrs.2025.100234
Wenhui Wang , Lijun Lin , Yue Ma , Yan Cui , Qi Zhang , Jincheng Yang , Yongheng Zhou , Liangyu Cui , Boyang Liu , Chang Su , Mengjia Yu , Yuwei Gao , Peng Gao , Yujia Du , Yu Zhou , Elizabeth Kamili , Shuhui Yang , Yanchun Xu
{"title":"Distinguishing between wild-caught and captive-bred Common Pheasant using methylation rate of skeletal muscle DNA","authors":"Wenhui Wang ,&nbsp;Lijun Lin ,&nbsp;Yue Ma ,&nbsp;Yan Cui ,&nbsp;Qi Zhang ,&nbsp;Jincheng Yang ,&nbsp;Yongheng Zhou ,&nbsp;Liangyu Cui ,&nbsp;Boyang Liu ,&nbsp;Chang Su ,&nbsp;Mengjia Yu ,&nbsp;Yuwei Gao ,&nbsp;Peng Gao ,&nbsp;Yujia Du ,&nbsp;Yu Zhou ,&nbsp;Elizabeth Kamili ,&nbsp;Shuhui Yang ,&nbsp;Yanchun Xu","doi":"10.1016/j.avrs.2025.100234","DOIUrl":null,"url":null,"abstract":"<div><div>Illegal hunting and trafficking of wildlife and their derivatives extort unprecedented population decline of relatively many species pushing them towards extinction. Notwithstanding contemporary counteracting interventions at international, regional, national and local levels, wildlife farming is advocated as an alternative approach to minimize pressure on wild populations. For wildlife farming to be an effective conservation tool, the integration of wildlife forensics is inevitable to allow distinction between captive-bred and wild-caught species. To this end, we analyzed methylation rates of skeletal muscle samples (pectoralis major, triceps brachii, gastrocnemius, biceps femoris, and neck muscles) from 60 captive-bred and 30 wild-caught Common Pheasant. A total of 13,507 differentially methylated regions were identified between five wild-caught and five captive-bred individuals through whole-genome methylation sequencing (WGBS). Based on the selected five methylation sites, <em>LOC116231076</em>, <em>LOC116242223</em>, <em>ATAD2B</em>, <em>EGFL6</em>, and <em>HS2ST</em>, quantitative detection technique was developed using methylation-sensitive high-resolution melting curve (MS-HRM) to measure methylation rates. The results showed significant differences in methylation rates at all differential sites between wild-caught and captive-bred individuals (|<em>t</em>| = 0.67–33.10, <em>P</em> = 0.000–0.042). The discrimination accuracy rate of each locus was highest in the gastrocnemius muscle and lowest in the neck muscle. The discrimination accuracy rate on <em>LOC116231076</em>, <em>LOC116242223</em>, <em>ATAD2B</em>, <em>EGFL6</em>, and <em>HS2ST</em> methylation sites for gastrocnemius muscle was 64.98%, 100.00%, 68.54%, 63.79%, and 63.70%, respectively; and for neck muscle it was 67.42%, 68.06%, 83.61%, 65.04%, and 68.85%, respectively. The united discrimination accuracy rate of the five loci were 100.00% for gastrocnemius muscle, 99.78% for biceps femoris muscle, 97.52% for pectoralis major muscle, 93.96% for triceps brachii muscle, and 91.63% for neck muscle, respectively. The panel also revealed excellent repeatability, reproducibility, sensitivity and universality to mammals and avian species. This study establishes an effective, accurate and low-cost identification technology for the identification of wild and farmed Common Pheasant, and also provides a reference for the development of identification methods for other species.</div></div>","PeriodicalId":51311,"journal":{"name":"Avian Research","volume":"16 2","pages":"Article 100234"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Avian Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2053716625000131","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORNITHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Illegal hunting and trafficking of wildlife and their derivatives extort unprecedented population decline of relatively many species pushing them towards extinction. Notwithstanding contemporary counteracting interventions at international, regional, national and local levels, wildlife farming is advocated as an alternative approach to minimize pressure on wild populations. For wildlife farming to be an effective conservation tool, the integration of wildlife forensics is inevitable to allow distinction between captive-bred and wild-caught species. To this end, we analyzed methylation rates of skeletal muscle samples (pectoralis major, triceps brachii, gastrocnemius, biceps femoris, and neck muscles) from 60 captive-bred and 30 wild-caught Common Pheasant. A total of 13,507 differentially methylated regions were identified between five wild-caught and five captive-bred individuals through whole-genome methylation sequencing (WGBS). Based on the selected five methylation sites, LOC116231076, LOC116242223, ATAD2B, EGFL6, and HS2ST, quantitative detection technique was developed using methylation-sensitive high-resolution melting curve (MS-HRM) to measure methylation rates. The results showed significant differences in methylation rates at all differential sites between wild-caught and captive-bred individuals (|t| = 0.67–33.10, P = 0.000–0.042). The discrimination accuracy rate of each locus was highest in the gastrocnemius muscle and lowest in the neck muscle. The discrimination accuracy rate on LOC116231076, LOC116242223, ATAD2B, EGFL6, and HS2ST methylation sites for gastrocnemius muscle was 64.98%, 100.00%, 68.54%, 63.79%, and 63.70%, respectively; and for neck muscle it was 67.42%, 68.06%, 83.61%, 65.04%, and 68.85%, respectively. The united discrimination accuracy rate of the five loci were 100.00% for gastrocnemius muscle, 99.78% for biceps femoris muscle, 97.52% for pectoralis major muscle, 93.96% for triceps brachii muscle, and 91.63% for neck muscle, respectively. The panel also revealed excellent repeatability, reproducibility, sensitivity and universality to mammals and avian species. This study establishes an effective, accurate and low-cost identification technology for the identification of wild and farmed Common Pheasant, and also provides a reference for the development of identification methods for other species.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Avian Research
Avian Research ORNITHOLOGY-
CiteScore
2.90
自引率
16.70%
发文量
456
审稿时长
46 days
期刊介绍: Avian Research is an open access, peer-reviewed journal publishing high quality research and review articles on all aspects of ornithology from all over the world. It aims to report the latest and most significant progress in ornithology and to encourage exchange of ideas among international ornithologists. As an open access journal, Avian Research provides a unique opportunity to publish high quality contents that will be internationally accessible to any reader at no cost.
期刊最新文献
Impacts of free-ranging yaks on habitat occupancy and population density of a high-mountain rare pheasant species Distinguishing between wild-caught and captive-bred Common Pheasant using methylation rate of skeletal muscle DNA A review of eDNA technology in avian monitoring: Current status, challenges and future perspectives Shallow water habitats provide high-quality foraging environments for the Spoon-billed Sandpiper at a critical staging site DFEFM: Fusing frequency correlation and mel features for robust edge bird audio detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1