Magnetic Fe3O4 nanoparticles modified with tannic acid as a support for silver nanoparticles: Catalytic efficiency in procuring 1-substituted-1H-tetrazoles and investigation its therapeutic effects on mycoplasma pneumonia infected pneumonia mice model

IF 2.1 3区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Journal of Organometallic Chemistry Pub Date : 2025-03-12 DOI:10.1016/j.jorganchem.2025.123617
Jianhui Peng , Siwei Luo , Yisui Cen , Hailiang Li , DeQin Zeng , Can Cai
{"title":"Magnetic Fe3O4 nanoparticles modified with tannic acid as a support for silver nanoparticles: Catalytic efficiency in procuring 1-substituted-1H-tetrazoles and investigation its therapeutic effects on mycoplasma pneumonia infected pneumonia mice model","authors":"Jianhui Peng ,&nbsp;Siwei Luo ,&nbsp;Yisui Cen ,&nbsp;Hailiang Li ,&nbsp;DeQin Zeng ,&nbsp;Can Cai","doi":"10.1016/j.jorganchem.2025.123617","DOIUrl":null,"url":null,"abstract":"<div><div>In this research, we present a green method for synthesizing silver nanoparticles supported on tannic acid (TA)-coated magnetic Fe<sub>3</sub>O<sub>4</sub> nanoparticles (Fe<sub>3</sub>O<sub>4</sub>@TA). This nanocomposite functions as both reducing and stabilizing reagent. We specified the constructional and physicochemical features of the synthesized Fe<sub>3</sub>O<sub>4</sub>@TA/Ag NPs using several analytical tools, especially TEM, FE-SEM, EDX, elemental mapping, ICP, VSM, and XRD. For catalytic testing, we explored a 1-substituted-tetrazoles synthesis through a multicomponent reaction involving amines, triethyl orthoformate, and sodium azide in solvent-free circumstances, achieving good results. We also corroborated the catalyst stability by reusability tests across six cycles, along with hot filtration and leaching experiments. The in vivo investigation involves evaluating the <em>P. aeruginosa</em> lethal dose in Swiss albino mice, along with a disease manifestations analysis. This analysis includes monitoring reductions in bacteremia, body weight, hypothermia, and various other parameters throughout a 48-hour infection period. The untreated animals demonstrated a significant decline in body temperature, recorded at 25 °C after 48 h, in contrast to the initial measurement of 39 °C. Furthermore, a weight reduction of 30 % was observed by the study end. The evaluation of the efficacy of Fe<sub>3</sub>O<sub>4</sub>@TA/Ag NPs nanocomposite in treating lung infections was conducted through the use of calculated lethal doses, bacteremia assessments, and histopathological analyses. On day 8, the bacterial load in the Fe<sub>3</sub>O<sub>4</sub>@TA/Ag NPs nanocomposite group was recorded at 0.5 Log10CFU/mL, reflecting a significant reduction from the initial level of 1.5 Log10CFU/mL observed on day 1. The histopathological analysis demonstrated a pervasive and intermittent accumulation of inflammatory cells within the alveolar spaces, with infiltrates detected across all lung sections in the untreated animals. The group of animals that received treatment exhibited improved lung histology, characterized by a decrease in exudates at a dosage of 200 µg/kg. The research clearly establishes the effectiveness of Fe<sub>3</sub>O<sub>4</sub>@TA/Ag NPs nanocomposite in addressing lung infections caused by <em>P. aeruginosa</em> at a dosage of 200 µg/kg. This investigation seeks to examine the biomedical properties of these Fe<sub>3</sub>O<sub>4</sub>@TA/Ag NPs nanocomposite to formulate a robust treatment for this formidable pathogen.</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1032 ","pages":"Article 123617"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022328X25001111","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, we present a green method for synthesizing silver nanoparticles supported on tannic acid (TA)-coated magnetic Fe3O4 nanoparticles (Fe3O4@TA). This nanocomposite functions as both reducing and stabilizing reagent. We specified the constructional and physicochemical features of the synthesized Fe3O4@TA/Ag NPs using several analytical tools, especially TEM, FE-SEM, EDX, elemental mapping, ICP, VSM, and XRD. For catalytic testing, we explored a 1-substituted-tetrazoles synthesis through a multicomponent reaction involving amines, triethyl orthoformate, and sodium azide in solvent-free circumstances, achieving good results. We also corroborated the catalyst stability by reusability tests across six cycles, along with hot filtration and leaching experiments. The in vivo investigation involves evaluating the P. aeruginosa lethal dose in Swiss albino mice, along with a disease manifestations analysis. This analysis includes monitoring reductions in bacteremia, body weight, hypothermia, and various other parameters throughout a 48-hour infection period. The untreated animals demonstrated a significant decline in body temperature, recorded at 25 °C after 48 h, in contrast to the initial measurement of 39 °C. Furthermore, a weight reduction of 30 % was observed by the study end. The evaluation of the efficacy of Fe3O4@TA/Ag NPs nanocomposite in treating lung infections was conducted through the use of calculated lethal doses, bacteremia assessments, and histopathological analyses. On day 8, the bacterial load in the Fe3O4@TA/Ag NPs nanocomposite group was recorded at 0.5 Log10CFU/mL, reflecting a significant reduction from the initial level of 1.5 Log10CFU/mL observed on day 1. The histopathological analysis demonstrated a pervasive and intermittent accumulation of inflammatory cells within the alveolar spaces, with infiltrates detected across all lung sections in the untreated animals. The group of animals that received treatment exhibited improved lung histology, characterized by a decrease in exudates at a dosage of 200 µg/kg. The research clearly establishes the effectiveness of Fe3O4@TA/Ag NPs nanocomposite in addressing lung infections caused by P. aeruginosa at a dosage of 200 µg/kg. This investigation seeks to examine the biomedical properties of these Fe3O4@TA/Ag NPs nanocomposite to formulate a robust treatment for this formidable pathogen.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单宁酸修饰的磁性Fe3O4纳米粒子作为银纳米粒子的载体:催化获得1-取代1h -四唑的效率及其对肺炎支原体感染肺炎小鼠模型的治疗效果研究
在这项研究中,我们提出了一种绿色合成单宁酸(TA)包覆磁性Fe3O4纳米粒子负载银纳米粒子的方法(Fe3O4@TA)。该纳米复合材料具有还原剂和稳定剂的双重作用。我们使用几种分析工具,特别是TEM, FE-SEM, EDX,元素映射,ICP, VSM和XRD,确定了合成的Fe3O4@TA/Ag NPs的结构和物理化学特征。在催化测试方面,我们探索了在无溶剂条件下,通过胺、原甲酸三乙酯和叠氮化钠的多组分反应合成1-取代四唑,取得了良好的效果。我们还通过六个循环的可重用性测试以及热过滤和浸出实验证实了催化剂的稳定性。体内研究包括评估铜绿假单胞菌在瑞士白化小鼠中的致死剂量,以及疾病表现分析。该分析包括监测感染48小时内菌血症、体重、体温过低和各种其他参数的减少情况。与最初测量的39℃相比,未经处理的动物在48小时后在25℃记录体温显著下降。此外,到研究结束时,体重减轻了30%。通过计算致死剂量、菌血症评估和组织病理学分析,评估Fe3O4@TA/Ag NPs纳米复合材料治疗肺部感染的疗效。第8天,Fe3O4@TA/Ag NPs纳米复合材料组的细菌负荷记录为0.5 Log10CFU/mL,与第1天观察到的1.5 Log10CFU/mL的初始水平相比显著降低。组织病理学分析显示,肺泡间隙内普遍存在间歇性的炎症细胞积聚,在未治疗的动物中,所有肺切片均检测到浸润。接受治疗的动物组表现出改善的肺组织学,其特征是在剂量为200µg/kg时渗出物减少。该研究明确确立了Fe3O4@TA/Ag NPs纳米复合材料在200µg/kg剂量下对铜绿假单胞菌引起的肺部感染的有效性。本研究旨在研究这些Fe3O4@TA/Ag纳米复合材料的生物医学特性,以制定针对这种强大病原体的强大治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Organometallic Chemistry
Journal of Organometallic Chemistry 化学-无机化学与核化学
CiteScore
4.40
自引率
8.70%
发文量
221
审稿时长
36 days
期刊介绍: The Journal of Organometallic Chemistry targets original papers dealing with theoretical aspects, structural chemistry, synthesis, physical and chemical properties (including reaction mechanisms), and practical applications of organometallic compounds. Organometallic compounds are defined as compounds that contain metal - carbon bonds. The term metal includes all alkali and alkaline earth metals, all transition metals and the lanthanides and actinides in the Periodic Table. Metalloids including the elements in Group 13 and the heavier members of the Groups 14 - 16 are also included. The term chemistry includes syntheses, characterizations and reaction chemistry of all such compounds. Research reports based on use of organometallic complexes in bioorganometallic chemistry, medicine, material sciences, homogeneous catalysis and energy conversion are also welcome. The scope of the journal has been enlarged to encompass important research on organometallic complexes in bioorganometallic chemistry and material sciences, and of heavier main group elements in organometallic chemistry. The journal also publishes review articles, short communications and notes.
期刊最新文献
Construction of MWCNTs/MNPs-based copper nanocomposite as an efficient and reusable catalyst for four-component preparation of highly substituted pyridines High-yielding preparation of Diaryl ketones via carbonylative cross-coupling reactions using a magnetic/carbon nanotube supported palladium catalyst in DESs solvent Editorial Board Graphical abstract TOC Contents continued
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1