{"title":"Atomistic simulations of heterogeneous electrocatalysis at the center of sustainable carbon feedstocks","authors":"Stefan Ringe , Gabriele Raabe","doi":"10.1016/j.coelec.2025.101671","DOIUrl":null,"url":null,"abstract":"<div><div>In the face of global warming, the electrochemical valorization of sustainable carbon feedstocks has a high potential to advance green chemistry and promote environmentally friendly practices. Computational simulations have become indispensable in shedding light on specific aspects of electrocatalytic processes. Modern techniques incorporate the effects of the electric double layer, enhancing their ability to model realistic systems. This review provides an overview and critical discussion of the latest developments. Density functional theory remains the preferred method for studying electrode reactions and interfacial effects on stationary or short-time scales. In contrast, force field-based methods excel at providing a full statistical sampling of solid–liquid interfaces. Machine learning techniques represent a critical step toward desirable multi-purpose, multi-scale methods that deliver high accuracy and coupling across multiple time and length scales.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"51 ","pages":"Article 101671"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910325000304","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the face of global warming, the electrochemical valorization of sustainable carbon feedstocks has a high potential to advance green chemistry and promote environmentally friendly practices. Computational simulations have become indispensable in shedding light on specific aspects of electrocatalytic processes. Modern techniques incorporate the effects of the electric double layer, enhancing their ability to model realistic systems. This review provides an overview and critical discussion of the latest developments. Density functional theory remains the preferred method for studying electrode reactions and interfacial effects on stationary or short-time scales. In contrast, force field-based methods excel at providing a full statistical sampling of solid–liquid interfaces. Machine learning techniques represent a critical step toward desirable multi-purpose, multi-scale methods that deliver high accuracy and coupling across multiple time and length scales.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •