Nonlinear dynamic analysis of new coupled Duffing-Van der Pol system and its application in underwater acoustic signal detection

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Chaos Solitons & Fractals Pub Date : 2025-03-19 DOI:10.1016/j.chaos.2025.116280
Guohui Li, Kexin Zhao, Hong Yang
{"title":"Nonlinear dynamic analysis of new coupled Duffing-Van der Pol system and its application in underwater acoustic signal detection","authors":"Guohui Li,&nbsp;Kexin Zhao,&nbsp;Hong Yang","doi":"10.1016/j.chaos.2025.116280","DOIUrl":null,"url":null,"abstract":"<div><div>In the context of complex noise in the marine environment, with the continuous improvement of various stealth technologies for underwater target, the signal-to-noise ratio (SNR) of received signal is decreasing gradually, which makes underwater acoustic signal (UAS) detection a difficult problem in the development of underwater acoustics. To achieve underwater acoustic signal detection in complex marine environment, new coupled Duffing-Van der Pol system (NCDVPS) is proposed, its nonlinear dynamic behavior is analyzed, and its application in UAS detection is researched. To improve the SNR threshold, the interior of Duffing system is improved. The nonlinear term is extended to higher order, damping terms are introduced, and it is coupled with the Van der Pol system through derivative term. Thus, new coupled Duffing-Van der Pol system is proposed, its nonlinear dynamic behavior is analyzed, and its simulink model is built. To precisely determine the critical threshold, multi-dimensional threshold comprehensive judgment method is proposed based on bifurcation diagram, Lyapunov exponent, zero-crossing technique, and entropy measurement method. To realize underwater acoustic signal detection, two detection methods are proposed according to whether the frequency of the signal to be measured is known or not. If it is known, the signal is input into NCDVPS, and the signal detection is realized by observing the change of phase trajectory. This method is named D-KS. If it is unknown, firstly, successive variational mode decomposition based on moss growth optimization (MGO-SVMD) is used to decompose the signal to be measured. Then, the optimal decomposed component is selected and input into NCDVPS. Intermittent chaos and Hilbert transform are combined to realize more accurate detection of the signal frequency. This method is named D-US. In the experimental research, through simulation experiment and measured experiment on ship radiated noise signal and marine biological signal, it is demonstrated that SNR of D-KS can reach −89.49 dB, and the detection accuracy of D-US can reach 99.98 %. This research provides new ideas and methods for underwater acoustic signal detection.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"195 ","pages":"Article 116280"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925002930","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of complex noise in the marine environment, with the continuous improvement of various stealth technologies for underwater target, the signal-to-noise ratio (SNR) of received signal is decreasing gradually, which makes underwater acoustic signal (UAS) detection a difficult problem in the development of underwater acoustics. To achieve underwater acoustic signal detection in complex marine environment, new coupled Duffing-Van der Pol system (NCDVPS) is proposed, its nonlinear dynamic behavior is analyzed, and its application in UAS detection is researched. To improve the SNR threshold, the interior of Duffing system is improved. The nonlinear term is extended to higher order, damping terms are introduced, and it is coupled with the Van der Pol system through derivative term. Thus, new coupled Duffing-Van der Pol system is proposed, its nonlinear dynamic behavior is analyzed, and its simulink model is built. To precisely determine the critical threshold, multi-dimensional threshold comprehensive judgment method is proposed based on bifurcation diagram, Lyapunov exponent, zero-crossing technique, and entropy measurement method. To realize underwater acoustic signal detection, two detection methods are proposed according to whether the frequency of the signal to be measured is known or not. If it is known, the signal is input into NCDVPS, and the signal detection is realized by observing the change of phase trajectory. This method is named D-KS. If it is unknown, firstly, successive variational mode decomposition based on moss growth optimization (MGO-SVMD) is used to decompose the signal to be measured. Then, the optimal decomposed component is selected and input into NCDVPS. Intermittent chaos and Hilbert transform are combined to realize more accurate detection of the signal frequency. This method is named D-US. In the experimental research, through simulation experiment and measured experiment on ship radiated noise signal and marine biological signal, it is demonstrated that SNR of D-KS can reach −89.49 dB, and the detection accuracy of D-US can reach 99.98 %. This research provides new ideas and methods for underwater acoustic signal detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
期刊最新文献
Nonlinear dynamic analysis of new coupled Duffing-Van der Pol system and its application in underwater acoustic signal detection Radially inflows and outflows of non-Newtonian Ree-Eyring fluid between two narrow disks with temperature-dependent viscosity Epidemic dynamics in homes and destinations under recurrent mobility patterns Coherent pulse interactions in mode-locked semiconductor lasers Temperature effects on the neuronal dynamics and Hamilton energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1