Alena Peterková , Ondřej Mudrák , Michal Holec , Karel Tajovský , Marie Hovorková , Saliha Irshad , Jan Frouz
{"title":"Plant and fauna biodiversity benefits from the combination of reclaimed and unreclaimed sites in heaps after uranium mining","authors":"Alena Peterková , Ondřej Mudrák , Michal Holec , Karel Tajovský , Marie Hovorková , Saliha Irshad , Jan Frouz","doi":"10.1016/j.ecoleng.2025.107613","DOIUrl":null,"url":null,"abstract":"<div><div>Mining significantly impacts the environment, but post-mining sites, particularly those left to natural succession, often support numerous rare species. Plant and soil fauna communities were studied using field inventories and pitfall trapping on reclaimed and unreclaimed heaps after uranium mining near Příbram (Czech Republic), and in the surrounding landscape (control site). All macrofauna invertebrates were sorted into orders, while Oniscidea, Diplopoda, Chilopoda, Araneae, Carabidae, and Formicidae were identified to the species level.</div><div>Unreclaimed heaps were covered with stones, sparse shrubby and herbaceous vegetation, while reclaimed heaps were covered by 0.5 m of topsoil and planted with mixed forest. The control site consisted of forest and agricultural land. The number of plant layer species and vegetation cover at this level on unreclaimed heaps were lower compared to reclaimed ones. However, the average number of tree species was higher on unreclaimed sites, despite the average cover of tree layer was lower.</div><div>A total of 24,101 individuals were caught, with 15,507 identified into 209 species. The highest number of red-listed species was found in reclaimed sites (<span><span>Kusumoarto et al., 2020</span></span> (21)), followed by unreclaimed sites (<span><span>Heneberg and Řezáč, 2018</span></span> (14)) and the control site (<span><span>Chase and Leibold, 2002</span></span> (6)). Spiders dominated the red-listed species (<span><span>Luff, 1998</span></span> (24)) across all locations.</div><div>Habitat preferences differed across all identified invertebrates. Reclaimed sites represent an intermediate state between unreclaimed heaps and the control site. Reclaimed and unreclaimed sites were significantly different from each other, as well as from the control site.</div><div>Our study indicates that both reclaimed and unreclaimed heaps serve as important biodiversity hotspots for threatened or endangered species.</div></div>","PeriodicalId":11490,"journal":{"name":"Ecological Engineering","volume":"215 ","pages":"Article 107613"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925857425001016","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mining significantly impacts the environment, but post-mining sites, particularly those left to natural succession, often support numerous rare species. Plant and soil fauna communities were studied using field inventories and pitfall trapping on reclaimed and unreclaimed heaps after uranium mining near Příbram (Czech Republic), and in the surrounding landscape (control site). All macrofauna invertebrates were sorted into orders, while Oniscidea, Diplopoda, Chilopoda, Araneae, Carabidae, and Formicidae were identified to the species level.
Unreclaimed heaps were covered with stones, sparse shrubby and herbaceous vegetation, while reclaimed heaps were covered by 0.5 m of topsoil and planted with mixed forest. The control site consisted of forest and agricultural land. The number of plant layer species and vegetation cover at this level on unreclaimed heaps were lower compared to reclaimed ones. However, the average number of tree species was higher on unreclaimed sites, despite the average cover of tree layer was lower.
A total of 24,101 individuals were caught, with 15,507 identified into 209 species. The highest number of red-listed species was found in reclaimed sites (Kusumoarto et al., 2020 (21)), followed by unreclaimed sites (Heneberg and Řezáč, 2018 (14)) and the control site (Chase and Leibold, 2002 (6)). Spiders dominated the red-listed species (Luff, 1998 (24)) across all locations.
Habitat preferences differed across all identified invertebrates. Reclaimed sites represent an intermediate state between unreclaimed heaps and the control site. Reclaimed and unreclaimed sites were significantly different from each other, as well as from the control site.
Our study indicates that both reclaimed and unreclaimed heaps serve as important biodiversity hotspots for threatened or endangered species.
期刊介绍:
Ecological engineering has been defined as the design of ecosystems for the mutual benefit of humans and nature. The journal is meant for ecologists who, because of their research interests or occupation, are involved in designing, monitoring, or restoring ecosystems, and can serve as a bridge between ecologists and engineers.
Specific topics covered in the journal include: habitat reconstruction; ecotechnology; synthetic ecology; bioengineering; restoration ecology; ecology conservation; ecosystem rehabilitation; stream and river restoration; reclamation ecology; non-renewable resource conservation. Descriptions of specific applications of ecological engineering are acceptable only when situated within context of adding novelty to current research and emphasizing ecosystem restoration. We do not accept purely descriptive reports on ecosystem structures (such as vegetation surveys), purely physical assessment of materials that can be used for ecological restoration, small-model studies carried out in the laboratory or greenhouse with artificial (waste)water or crop studies, or case studies on conventional wastewater treatment and eutrophication that do not offer an ecosystem restoration approach within the paper.