J. Weng , J. Liu , X.J. Chen , F. Liu , F.J. Cui , J.H. Wang , L.W. Xiong
{"title":"Investigation on the effect of refine adjusting substrate holder on the preparation of diamond","authors":"J. Weng , J. Liu , X.J. Chen , F. Liu , F.J. Cui , J.H. Wang , L.W. Xiong","doi":"10.1016/j.jcrysgro.2025.128154","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, the growth environment for the SCDs and the diamond film are improved by refine the arrangement of the substrate holder in our self-developed MPCVD apparatus. The arrangement of the substrate holder is controlled by the △h which is kept less than 3.0 mm. The plasma around the substrate holder is systematically researched with multi-physical simulation and OES. The △h is finally selected at 1.5 mm and 0.5 mm to prepare SCDs and diamond film. Using the arrangement of the substrate holder, the cracks in the SCDs put at the edge of the Mo substrate and the fragmentation of the freestanding diamond film are effective avoided. The results turn out that the uniformity of the plasma can be enhanced by reasonable selecting the △h, and in this way the edge effect of the substrate can be effectively utilized. The obtained results provide a guidance for the scalable production of diamond material.</div></div>","PeriodicalId":353,"journal":{"name":"Journal of Crystal Growth","volume":"659 ","pages":"Article 128154"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crystal Growth","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022024825001022","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, the growth environment for the SCDs and the diamond film are improved by refine the arrangement of the substrate holder in our self-developed MPCVD apparatus. The arrangement of the substrate holder is controlled by the △h which is kept less than 3.0 mm. The plasma around the substrate holder is systematically researched with multi-physical simulation and OES. The △h is finally selected at 1.5 mm and 0.5 mm to prepare SCDs and diamond film. Using the arrangement of the substrate holder, the cracks in the SCDs put at the edge of the Mo substrate and the fragmentation of the freestanding diamond film are effective avoided. The results turn out that the uniformity of the plasma can be enhanced by reasonable selecting the △h, and in this way the edge effect of the substrate can be effectively utilized. The obtained results provide a guidance for the scalable production of diamond material.
期刊介绍:
The journal offers a common reference and publication source for workers engaged in research on the experimental and theoretical aspects of crystal growth and its applications, e.g. in devices. Experimental and theoretical contributions are published in the following fields: theory of nucleation and growth, molecular kinetics and transport phenomena, crystallization in viscous media such as polymers and glasses; crystal growth of metals, minerals, semiconductors, superconductors, magnetics, inorganic, organic and biological substances in bulk or as thin films; molecular beam epitaxy, chemical vapor deposition, growth of III-V and II-VI and other semiconductors; characterization of single crystals by physical and chemical methods; apparatus, instrumentation and techniques for crystal growth, and purification methods; multilayer heterostructures and their characterisation with an emphasis on crystal growth and epitaxial aspects of electronic materials. A special feature of the journal is the periodic inclusion of proceedings of symposia and conferences on relevant aspects of crystal growth.