Operability for process flowsheet analysis

IF 3 Q2 ENGINEERING, CHEMICAL Digital Chemical Engineering Pub Date : 2025-03-06 DOI:10.1016/j.dche.2025.100229
Ulysses Guilherme Ferreira , Sérgio Mauro da Silva Neiro , Luís Cláudio Oliveira-Lopes , Thiago Vaz da Costa , Heleno Bispo , Fernando Vines Lima
{"title":"Operability for process flowsheet analysis","authors":"Ulysses Guilherme Ferreira ,&nbsp;Sérgio Mauro da Silva Neiro ,&nbsp;Luís Cláudio Oliveira-Lopes ,&nbsp;Thiago Vaz da Costa ,&nbsp;Heleno Bispo ,&nbsp;Fernando Vines Lima","doi":"10.1016/j.dche.2025.100229","DOIUrl":null,"url":null,"abstract":"<div><div>Operability establishes the relationship between available input and achievable output sets through a system's mathematical representation. This work aims to develop a Flowsheet Operability analysis for a chemical process using rigorous models in a process simulator. The analysis focuses on a typical Air Separation Unit (ASU) in UniSim® Design (Honeywell) and integrates the simulator with the open-source Python operability tool (Opyrability) developed at West Virginia University. The performed assessment incrementally adds the output space of the process flowsheet units and examines how one group of units output space affects downstream units. The results underscore the importance of Flowsheet Operability analysis and the inclusion of inter-unit operability spaces for efficiently identifying unfavorable operating conditions that traditional Plantwide Operability analysis might overlook.</div></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"15 ","pages":"Article 100229"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508125000134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Operability establishes the relationship between available input and achievable output sets through a system's mathematical representation. This work aims to develop a Flowsheet Operability analysis for a chemical process using rigorous models in a process simulator. The analysis focuses on a typical Air Separation Unit (ASU) in UniSim® Design (Honeywell) and integrates the simulator with the open-source Python operability tool (Opyrability) developed at West Virginia University. The performed assessment incrementally adds the output space of the process flowsheet units and examines how one group of units output space affects downstream units. The results underscore the importance of Flowsheet Operability analysis and the inclusion of inter-unit operability spaces for efficiently identifying unfavorable operating conditions that traditional Plantwide Operability analysis might overlook.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
Surrogate-based flowsheet model maintenance for Digital Twins Real-time process safety and systems decision-making toward safe and smart chemical manufacturing Assessment of forward and forward–backward Bayesian filters Operability for process flowsheet analysis Classifier surrogates to ensure phase stability in optimisation-based design of solvent mixtures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1