The predominance of root- and salt-marsh-derived soil organic carbon in a mangrove poleward range expansion front

IF 5.6 1区 农林科学 Q1 SOIL SCIENCE Geoderma Pub Date : 2025-03-19 DOI:10.1016/j.geoderma.2025.117249
Prakhin Assavapanuvat , Joshua L. Breithaupt , Ding He , Ralph N. Mead , Thomas S. Bianchi
{"title":"The predominance of root- and salt-marsh-derived soil organic carbon in a mangrove poleward range expansion front","authors":"Prakhin Assavapanuvat ,&nbsp;Joshua L. Breithaupt ,&nbsp;Ding He ,&nbsp;Ralph N. Mead ,&nbsp;Thomas S. Bianchi","doi":"10.1016/j.geoderma.2025.117249","DOIUrl":null,"url":null,"abstract":"<div><div>Due to global warming, temperate salt marshes (e.g., <em>Spartina alterniflora</em> and <em>Juncus roemerianus</em>) are being overtaken by poleward migrating mangroves (e.g., <em>Avicennia germinans</em> and <em>Rhizophora mangle</em>). While bulk soil organic carbon (SOC) stocks have been widely compared across mangrove and salt marsh habitats, differentiation of SOC derived from leaves and roots of each mangrove and salt marsh species remains a challenge. Hence, we used multiple biomarkers and proxies (stable isotopes, lignin oxidation products, <em>n</em>-alkanes, sterols, and triterpenoids) to quantify the relative contribution of leaves and roots of each plant taxon to bulk SOC in a mangrove-salt marsh ecotone in Apalachicola (Florida, USA). The shallow peaks of mangrove leaf biomarker (α-amyrin for <em>A. germinans</em>, taraxerol for <em>R. mangle</em>) suggested the deposition of mangrove leaf-OC over soil surface after the initial mangrove establishment, while the abundance of betulin and 3,5-dihydroxy benzoic acid in <em>A. germinans</em> and <em>R. mangle</em> deep soils, respectively, indicated subsurface contribution of mangrove root-OC, down to 45-cm depth. Based on mixing models, the principal source of SOC in mangrove habitats has shifted from <em>S. alterniflora</em> roots to mangrove roots. The total contribution of roots to the SOC pool in mangrove habitats was 69.0–86.1 %, highlighting that SOC was preferentially formed belowground. Interestingly, within ∼34 years after initial mangrove establishment, the majority (62.3–74.0 %) of SOC in mangrove habitats continues to be derived from pre-existing salt marshes. This emphasizes that comparing bulk SOC without considering their actual sources could result in an overestimation of the contribution of encroaching mangroves to SOC stocks.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"456 ","pages":"Article 117249"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016706125000874","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Due to global warming, temperate salt marshes (e.g., Spartina alterniflora and Juncus roemerianus) are being overtaken by poleward migrating mangroves (e.g., Avicennia germinans and Rhizophora mangle). While bulk soil organic carbon (SOC) stocks have been widely compared across mangrove and salt marsh habitats, differentiation of SOC derived from leaves and roots of each mangrove and salt marsh species remains a challenge. Hence, we used multiple biomarkers and proxies (stable isotopes, lignin oxidation products, n-alkanes, sterols, and triterpenoids) to quantify the relative contribution of leaves and roots of each plant taxon to bulk SOC in a mangrove-salt marsh ecotone in Apalachicola (Florida, USA). The shallow peaks of mangrove leaf biomarker (α-amyrin for A. germinans, taraxerol for R. mangle) suggested the deposition of mangrove leaf-OC over soil surface after the initial mangrove establishment, while the abundance of betulin and 3,5-dihydroxy benzoic acid in A. germinans and R. mangle deep soils, respectively, indicated subsurface contribution of mangrove root-OC, down to 45-cm depth. Based on mixing models, the principal source of SOC in mangrove habitats has shifted from S. alterniflora roots to mangrove roots. The total contribution of roots to the SOC pool in mangrove habitats was 69.0–86.1 %, highlighting that SOC was preferentially formed belowground. Interestingly, within ∼34 years after initial mangrove establishment, the majority (62.3–74.0 %) of SOC in mangrove habitats continues to be derived from pre-existing salt marshes. This emphasizes that comparing bulk SOC without considering their actual sources could result in an overestimation of the contribution of encroaching mangroves to SOC stocks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由于全球变暖,温带盐沼(如 Spartina alterniflora 和 Juncus roemerianus)正被向极地迁移的红树林(如 Avicennia germinans 和 Rhizophora mangle)所取代。虽然对红树林和盐沼栖息地的土壤有机碳(SOC)储量进行了广泛比较,但如何区分来自各红树林和盐沼物种叶片和根部的 SOC 仍是一项挑战。因此,我们使用多种生物标志物和代用指标(稳定同位素、木质素氧化产物、正烷烃、甾醇和三萜类化合物)来量化阿帕拉奇科拉(美国佛罗里达州)红树林-盐沼生态区中各植物类群的叶和根对大量 SOC 的相对贡献。红树林叶片生物标志物(A. germinans 为 α-amyrin,R. mangle 为 taraxerol)的浅层峰值表明红树林叶片有机碳沉积在最初建立红树林后的土壤表层,而 A. germinans 和 R. mangle 深层土壤中的白桦脂素和 3,5- 二羟基苯甲酸的丰度分别表明红树林根部有机碳在地表下的贡献,最深可达 45 厘米。根据混合模型,红树林生境中 SOC 的主要来源已从 S. alterniflora 根系转移到红树林根系。根系对红树林栖息地 SOC 库的总贡献率为 69.0-86.1%,表明 SOC 主要在地下形成。有趣的是,在最初建立红树林后的 34 年内,红树林栖息地的大部分 SOC(62.3-74.0%)仍然来自于先前存在的盐沼。这强调了在不考虑实际来源的情况下比较大量 SOC 可能会导致高估侵占红树林对 SOC 储量的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geoderma
Geoderma 农林科学-土壤科学
CiteScore
11.80
自引率
6.60%
发文量
597
审稿时长
58 days
期刊介绍: Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.
期刊最新文献
The predominance of root- and salt-marsh-derived soil organic carbon in a mangrove poleward range expansion front Effects of vegetation restoration on soil organic carbon on the Loess Plateau, China using a combined remote sensing and process-based modeling approach A novel perspective on near-surface soil freeze states: Discontinuity of the freeze process The diversity, composition and potential function of bacterial size fractions from maize and soybean farmland soils Ensemble and transfer learning of soil inorganic carbon with visible near-infrared spectra
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1