{"title":"Design and Analysis of Permanent Magnet Arc-Linear Motor Having Different Stator-Permanent Magnet Arrangements","authors":"Zhenbao Pan;Jiwen Zhao;Kaiwei Wei;Yiming Shen","doi":"10.1109/TPS.2025.3534983","DOIUrl":null,"url":null,"abstract":"Permanent magnet (PM) linear motor is widely used in the electromagnetic launch system due to the merits of high thrust and rapid response. Inheriting the advantages of linear motor, the PM arc-linear motor (PMAM) has been recognized as an eminent competitor for driving servo turntables and large telescope. This article designs a dual-PM excited PMAM (DPM-PMAM) having different PM arrangements and three-unit distributed complementary structure. Benefiting from the special stator-PM layouts, the DPM-PMAM exhibits the essential flux concentration effect, which contributes to enhance the torque capability. The motor topology and working principle of the studied DPM-PMAM are introduced. The feasible stator slot/rotor pole combinations and the major design parameters are optimized for improving electromagnetic performances. Then, the DPM-PMAM is quantitatively compared with the slot-PM excited PMAM (SPM-PMAM) and the yoke-PM excited PMAM (YPM-PMAM) based on the optimal designs. By comparison, it is found that the DPM-PMAM shows the improved average torque and good overload capability. Finally, the 2-D finite-element (FE) predicted results are validated by 3-D FE results.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 3","pages":"430-438"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10904122","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10904122/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Permanent magnet (PM) linear motor is widely used in the electromagnetic launch system due to the merits of high thrust and rapid response. Inheriting the advantages of linear motor, the PM arc-linear motor (PMAM) has been recognized as an eminent competitor for driving servo turntables and large telescope. This article designs a dual-PM excited PMAM (DPM-PMAM) having different PM arrangements and three-unit distributed complementary structure. Benefiting from the special stator-PM layouts, the DPM-PMAM exhibits the essential flux concentration effect, which contributes to enhance the torque capability. The motor topology and working principle of the studied DPM-PMAM are introduced. The feasible stator slot/rotor pole combinations and the major design parameters are optimized for improving electromagnetic performances. Then, the DPM-PMAM is quantitatively compared with the slot-PM excited PMAM (SPM-PMAM) and the yoke-PM excited PMAM (YPM-PMAM) based on the optimal designs. By comparison, it is found that the DPM-PMAM shows the improved average torque and good overload capability. Finally, the 2-D finite-element (FE) predicted results are validated by 3-D FE results.
期刊介绍:
The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.