Design and optimization of a novel fluorescent molecularly imprinted polymer for selective niclosamide sensing in real samples: greenness assessment of MIP synthesis using AGREEMIP
Kalyani A. Birari, Pravin O. Patil, Mohamad Taleuzzaman, Md Shamsher Alam, Shadma Wahab, Mohammad Khalid, Zamir G. Khan
{"title":"Design and optimization of a novel fluorescent molecularly imprinted polymer for selective niclosamide sensing in real samples: greenness assessment of MIP synthesis using AGREEMIP","authors":"Kalyani A. Birari, Pravin O. Patil, Mohamad Taleuzzaman, Md Shamsher Alam, Shadma Wahab, Mohammad Khalid, Zamir G. Khan","doi":"10.1007/s00604-025-07090-4","DOIUrl":null,"url":null,"abstract":"<div><p>In the fields of public health, veterinary medicine, and aquaculture, niclosamide (NIC), a common anthelmintic drug, is essential for deworming and treating a variety of illnesses, such as viral infections, metabolic disorders, and cancer. However, NIC can pose potential risks, such as DNA damage and adverse vasodilation effects in vivo. This study introduces an innovative fluorescent nanosensor for the detection of NIC in food samples. The sensor utilises sulphur and nitrogen co-doped carbon dots (S,N-CDs) derived from eco-friendly materials, Turbo bruneus and L-cysteine, encapsulated within a molecularly imprinted polymer (S,N-CDs@MIP). The sensor operates on a “Turn Off” mechanism, where NIC binding results in decreased fluorescence intensity, effectively detecting NIC in the 1–10 µM concentration range. Excellent sensitivity is indicated by the calibration curve, which displays a strong linear connection between NIC concentration and fluorescence intensity (<i>Y</i> = 0.0612x + 0.0689, <i>R</i><sup>2</sup> = 0.9996) and a detection limit of 48.1 nM. The sensor is selective, user-friendly, and cost-effective, with NIC recoveries in food samples ranging from 96.33 to 103.23% and low RSD values (0.81 to 4.89%). Moreover, we utilized the AGREEMIP software to assess the greenness of MIP synthesis processes. This tool evaluates 12 criteria encompassing energy requirements, synthesis specifics, and the environmental impact of reaction components, providing a comprehensive measure of the produced MIP's sustainability. Compared to non-imprinted polymers, the S,N-CDs@MIP sensor offers superior optical stability and specificity, making it a promising tool for practical NIC detection in real-world applications.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 4","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-025-07090-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the fields of public health, veterinary medicine, and aquaculture, niclosamide (NIC), a common anthelmintic drug, is essential for deworming and treating a variety of illnesses, such as viral infections, metabolic disorders, and cancer. However, NIC can pose potential risks, such as DNA damage and adverse vasodilation effects in vivo. This study introduces an innovative fluorescent nanosensor for the detection of NIC in food samples. The sensor utilises sulphur and nitrogen co-doped carbon dots (S,N-CDs) derived from eco-friendly materials, Turbo bruneus and L-cysteine, encapsulated within a molecularly imprinted polymer (S,N-CDs@MIP). The sensor operates on a “Turn Off” mechanism, where NIC binding results in decreased fluorescence intensity, effectively detecting NIC in the 1–10 µM concentration range. Excellent sensitivity is indicated by the calibration curve, which displays a strong linear connection between NIC concentration and fluorescence intensity (Y = 0.0612x + 0.0689, R2 = 0.9996) and a detection limit of 48.1 nM. The sensor is selective, user-friendly, and cost-effective, with NIC recoveries in food samples ranging from 96.33 to 103.23% and low RSD values (0.81 to 4.89%). Moreover, we utilized the AGREEMIP software to assess the greenness of MIP synthesis processes. This tool evaluates 12 criteria encompassing energy requirements, synthesis specifics, and the environmental impact of reaction components, providing a comprehensive measure of the produced MIP's sustainability. Compared to non-imprinted polymers, the S,N-CDs@MIP sensor offers superior optical stability and specificity, making it a promising tool for practical NIC detection in real-world applications.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.