P. A. Popov, A. V. Shchelokov, A. I. Zentsova, A. A. Alexandrov, E. V. Chernova, P. P. Fedorov
{"title":"Thermal Conductivity of Ca1–x–ySrxNdyF2+y Solid Solution Single Crystals","authors":"P. A. Popov, A. V. Shchelokov, A. I. Zentsova, A. A. Alexandrov, E. V. Chernova, P. P. Fedorov","doi":"10.1134/S0020168524701425","DOIUrl":null,"url":null,"abstract":"<p>The thermal conductivity of a series of single crystals of Ca<sub>1–<i>x</i>–<i>y</i></sub>Sr<sub><i>x</i></sub>Nd<sub><i>y</i></sub>F<sub>2+<i>y</i></sub> ternary solid solutions containing 0–30 mol % SrF<sub>2</sub> and 10–30 mol % NdF<sub>3</sub> has been measured in the temperature range 50–300 K by an absolute steady-state axial heat flow technique. An increase in the percentage of strontium and, especially, neodymium in the solid solutions is accompanied by a decrease in their thermal conductivity. The temperature dependence of thermal conductivity for all of the solid solutions studied is characteristic of disordered materials.</p>","PeriodicalId":585,"journal":{"name":"Inorganic Materials","volume":"60 9","pages":"1109 - 1116"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S0020168524701425","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The thermal conductivity of a series of single crystals of Ca1–x–ySrxNdyF2+y ternary solid solutions containing 0–30 mol % SrF2 and 10–30 mol % NdF3 has been measured in the temperature range 50–300 K by an absolute steady-state axial heat flow technique. An increase in the percentage of strontium and, especially, neodymium in the solid solutions is accompanied by a decrease in their thermal conductivity. The temperature dependence of thermal conductivity for all of the solid solutions studied is characteristic of disordered materials.
期刊介绍:
Inorganic Materials is a journal that publishes reviews and original articles devoted to chemistry, physics, and applications of various inorganic materials including high-purity substances and materials. The journal discusses phase equilibria, including P–T–X diagrams, and the fundamentals of inorganic materials science, which determines preparatory conditions for compounds of various compositions with specified deviations from stoichiometry. Inorganic Materials is a multidisciplinary journal covering all classes of inorganic materials. The journal welcomes manuscripts from all countries in the English or Russian language.