A. F. Dresvyannikov, M. E. Kolpakov, E. A. Ermolaeva
{"title":"Polymetallic Medium-Entropy System Fe–Ni–Co–Cu Prepared via Galvanic Replacement","authors":"A. F. Dresvyannikov, M. E. Kolpakov, E. A. Ermolaeva","doi":"10.1134/S0020168524701395","DOIUrl":null,"url":null,"abstract":"<p>A fine-particle Fe–Ni–Co–Cu polymetallic system has been prepared in an aqueous solution of metal chlorides using galvanic replacement by fine-particle aluminum. The elemental and phase compositions of the synthesized powders have been determined by X-ray fluorescence analysis and X-ray diffraction. The content of elemental metals (Fe, Ni, Co, and Cu) in the deposit has been shown to reach 98 wt %. X-ray diffraction data have been used to evaluate the crystallite size (~20 nm) and unit-cell parameters of the phases identified. The powder particles have the form of spherical micron-sized skeletal structures (~75 μm in size), with a large number of nuclei 50–60 nm in size.</p>","PeriodicalId":585,"journal":{"name":"Inorganic Materials","volume":"60 9","pages":"1089 - 1094"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S0020168524701395","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A fine-particle Fe–Ni–Co–Cu polymetallic system has been prepared in an aqueous solution of metal chlorides using galvanic replacement by fine-particle aluminum. The elemental and phase compositions of the synthesized powders have been determined by X-ray fluorescence analysis and X-ray diffraction. The content of elemental metals (Fe, Ni, Co, and Cu) in the deposit has been shown to reach 98 wt %. X-ray diffraction data have been used to evaluate the crystallite size (~20 nm) and unit-cell parameters of the phases identified. The powder particles have the form of spherical micron-sized skeletal structures (~75 μm in size), with a large number of nuclei 50–60 nm in size.
期刊介绍:
Inorganic Materials is a journal that publishes reviews and original articles devoted to chemistry, physics, and applications of various inorganic materials including high-purity substances and materials. The journal discusses phase equilibria, including P–T–X diagrams, and the fundamentals of inorganic materials science, which determines preparatory conditions for compounds of various compositions with specified deviations from stoichiometry. Inorganic Materials is a multidisciplinary journal covering all classes of inorganic materials. The journal welcomes manuscripts from all countries in the English or Russian language.