Short-term salinity prediction for coastal areas of the Vietnamese Mekong Delta using various machine learning algorithms: a case study in Soc Trang Province

IF 5.7 3区 环境科学与生态学 Q1 WATER RESOURCES Applied Water Science Pub Date : 2025-03-19 DOI:10.1007/s13201-025-02419-z
Le Thi Thanh Dang, Hiroshi Ishidaira, Ky Phung Nguyen, Kazuyoshi Souma, Jun Magome
{"title":"Short-term salinity prediction for coastal areas of the Vietnamese Mekong Delta using various machine learning algorithms: a case study in Soc Trang Province","authors":"Le Thi Thanh Dang,&nbsp;Hiroshi Ishidaira,&nbsp;Ky Phung Nguyen,&nbsp;Kazuyoshi Souma,&nbsp;Jun Magome","doi":"10.1007/s13201-025-02419-z","DOIUrl":null,"url":null,"abstract":"<div><p>Saltwater intrusion has significant and diverse impacts on agriculture, freshwater resources, and the well-being of coastal communities. To effectively address this issue, precise models for predicting saltwater intrusion must be developed, as well as timely information for reaction planning. In this study, a spectrum of machine learning (ML) methodologies, specifically Random Forest Regression (RFR), Support Vector Regression (SVR), Long Short-Term Memory (LSTM), Artificial Neural Network (ANN), Extreme Gradient Boosting (XGBoost), and Ridge Regression (RR), was systematically employed to predict salinity levels within the coastal environs of the Mekong Delta, Vietnam. The input dataset comprised hourly salinity measurements from Tran De, Long Phu, Dai Ngai, and Soc Trang stations and hourly water-level data from Tran De station and hourly discharge data from the Can Tho hydrological station. The dataset was partitioned into two distinct sets for the purpose of model development and evaluation, employing a division ratio of 75% for training (constituting 8469 observations) and 25% for testing (comprising 2822 observations). The results indicate that ML models are suitable for short-term salinity prediction, with a forecasting time of up to 16 h in this area. These research findings highlight the potential of machine learning in addressing saltwater intrusion and provide valuable insights for developing appropriate response policies. By leveraging the strengths of these models and considering the optimal forecasting time, policymakers can make informed decisions and implement effective measures to mitigate the impacts of saltwater intrusion in the Mekong Delta.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"15 4","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-025-02419-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-025-02419-z","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Saltwater intrusion has significant and diverse impacts on agriculture, freshwater resources, and the well-being of coastal communities. To effectively address this issue, precise models for predicting saltwater intrusion must be developed, as well as timely information for reaction planning. In this study, a spectrum of machine learning (ML) methodologies, specifically Random Forest Regression (RFR), Support Vector Regression (SVR), Long Short-Term Memory (LSTM), Artificial Neural Network (ANN), Extreme Gradient Boosting (XGBoost), and Ridge Regression (RR), was systematically employed to predict salinity levels within the coastal environs of the Mekong Delta, Vietnam. The input dataset comprised hourly salinity measurements from Tran De, Long Phu, Dai Ngai, and Soc Trang stations and hourly water-level data from Tran De station and hourly discharge data from the Can Tho hydrological station. The dataset was partitioned into two distinct sets for the purpose of model development and evaluation, employing a division ratio of 75% for training (constituting 8469 observations) and 25% for testing (comprising 2822 observations). The results indicate that ML models are suitable for short-term salinity prediction, with a forecasting time of up to 16 h in this area. These research findings highlight the potential of machine learning in addressing saltwater intrusion and provide valuable insights for developing appropriate response policies. By leveraging the strengths of these models and considering the optimal forecasting time, policymakers can make informed decisions and implement effective measures to mitigate the impacts of saltwater intrusion in the Mekong Delta.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Water Science
Applied Water Science WATER RESOURCES-
CiteScore
9.90
自引率
3.60%
发文量
268
审稿时长
13 weeks
期刊介绍:
期刊最新文献
Implications of seasonal variations of hydrogeochemical analysis using GIS, WQI, and statistical analysis method for the semi-arid region Short-term salinity prediction for coastal areas of the Vietnamese Mekong Delta using various machine learning algorithms: a case study in Soc Trang Province Urban flood hazard assessment using FLA-optimized boost algorithms in Ankara, Türkiye Evaluating the contamination susceptibility of groundwater resources through anthropogenic activities in Islamabad, Pakistan: a GIS-based DRASTIC approach Dye removal by the designed carbon nanostructures@TiO2: infrared-assisted synthesis and methylene blue degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1