Short-term salinity prediction for coastal areas of the Vietnamese Mekong Delta using various machine learning algorithms: a case study in Soc Trang Province
Le Thi Thanh Dang, Hiroshi Ishidaira, Ky Phung Nguyen, Kazuyoshi Souma, Jun Magome
{"title":"Short-term salinity prediction for coastal areas of the Vietnamese Mekong Delta using various machine learning algorithms: a case study in Soc Trang Province","authors":"Le Thi Thanh Dang, Hiroshi Ishidaira, Ky Phung Nguyen, Kazuyoshi Souma, Jun Magome","doi":"10.1007/s13201-025-02419-z","DOIUrl":null,"url":null,"abstract":"<div><p>Saltwater intrusion has significant and diverse impacts on agriculture, freshwater resources, and the well-being of coastal communities. To effectively address this issue, precise models for predicting saltwater intrusion must be developed, as well as timely information for reaction planning. In this study, a spectrum of machine learning (ML) methodologies, specifically Random Forest Regression (RFR), Support Vector Regression (SVR), Long Short-Term Memory (LSTM), Artificial Neural Network (ANN), Extreme Gradient Boosting (XGBoost), and Ridge Regression (RR), was systematically employed to predict salinity levels within the coastal environs of the Mekong Delta, Vietnam. The input dataset comprised hourly salinity measurements from Tran De, Long Phu, Dai Ngai, and Soc Trang stations and hourly water-level data from Tran De station and hourly discharge data from the Can Tho hydrological station. The dataset was partitioned into two distinct sets for the purpose of model development and evaluation, employing a division ratio of 75% for training (constituting 8469 observations) and 25% for testing (comprising 2822 observations). The results indicate that ML models are suitable for short-term salinity prediction, with a forecasting time of up to 16 h in this area. These research findings highlight the potential of machine learning in addressing saltwater intrusion and provide valuable insights for developing appropriate response policies. By leveraging the strengths of these models and considering the optimal forecasting time, policymakers can make informed decisions and implement effective measures to mitigate the impacts of saltwater intrusion in the Mekong Delta.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"15 4","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-025-02419-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-025-02419-z","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Saltwater intrusion has significant and diverse impacts on agriculture, freshwater resources, and the well-being of coastal communities. To effectively address this issue, precise models for predicting saltwater intrusion must be developed, as well as timely information for reaction planning. In this study, a spectrum of machine learning (ML) methodologies, specifically Random Forest Regression (RFR), Support Vector Regression (SVR), Long Short-Term Memory (LSTM), Artificial Neural Network (ANN), Extreme Gradient Boosting (XGBoost), and Ridge Regression (RR), was systematically employed to predict salinity levels within the coastal environs of the Mekong Delta, Vietnam. The input dataset comprised hourly salinity measurements from Tran De, Long Phu, Dai Ngai, and Soc Trang stations and hourly water-level data from Tran De station and hourly discharge data from the Can Tho hydrological station. The dataset was partitioned into two distinct sets for the purpose of model development and evaluation, employing a division ratio of 75% for training (constituting 8469 observations) and 25% for testing (comprising 2822 observations). The results indicate that ML models are suitable for short-term salinity prediction, with a forecasting time of up to 16 h in this area. These research findings highlight the potential of machine learning in addressing saltwater intrusion and provide valuable insights for developing appropriate response policies. By leveraging the strengths of these models and considering the optimal forecasting time, policymakers can make informed decisions and implement effective measures to mitigate the impacts of saltwater intrusion in the Mekong Delta.