Protective effects of N-acetylcysteine against titanium dioxide nanoparticles-induced kidney damage in rats

IF 2.9 4区 生物学 Q3 CELL BIOLOGY Journal of Molecular Histology Pub Date : 2025-03-19 DOI:10.1007/s10735-025-10395-6
Cengiz Yuksel, Yesim Hulya Uz
{"title":"Protective effects of N-acetylcysteine against titanium dioxide nanoparticles-induced kidney damage in rats","authors":"Cengiz Yuksel,&nbsp;Yesim Hulya Uz","doi":"10.1007/s10735-025-10395-6","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this study was to evaluate the potential protective effect of <i>N</i>-acetylcysteine (NAC) against kidney damage induced by titanium dioxide nanoparticles (TiO<sub>2</sub>NP) through biochemical, histological, and immunohistochemical analyses. Forty rats were randomly divided into four groups of 10 animals each. Saline was administered intragastrically to control group for 14 days. In NAC group, 150 mg/kg NAC was injected intraperitoneally for 21 days. In TiO<sub>2</sub>NP group, TiO<sub>2</sub>NP at a dose of 50 mg/kg/day, dissolved in saline, was administered intragastrically for 14 days. TiO<sub>2</sub>NP + NAC group received 50 mg/kg/day TiO<sub>2</sub>NP for 14 days and 150 mg/kg NAC for 21 days, starting 7 days before TiO<sub>2</sub>NP administration. At the end of experiment, rats were anesthetized, serum samples were collected for biochemical analysis, and kidney tissue was removed for histological and immunohistochemical analyses. There was no significant change in body weight, kidney weight, or serum urea-creatinine levels between the groups. TiO<sub>2</sub>NP caused a significant increase in vacuolization and brush border loss scores in tubular cells, as well as scores for congestion and leukocyte infiltration. However, NAC supplementation significantly ameliorated these impairments. Additionally, TiO<sub>2</sub>NP significantly increased NF-kB, TNF-α, and caspase-3 immunoreactivities, as well as the number of PCNA-positive and TUNEL-positive cells. NAC treatment decreased all immunoreactivities and TUNEL-positive cells, but did not change the number of PCNA-positive cells after TiO<sub>2</sub>NP exposure. The results of the study showed that the toxic effects of TiO<sub>2</sub>NP on the kidneys, commonly encountered in daily life, can be mitigated by the anti-inflammatory and anti-apoptotic properties of NAC.</p></div>","PeriodicalId":650,"journal":{"name":"Journal of Molecular Histology","volume":"56 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Histology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10735-025-10395-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this study was to evaluate the potential protective effect of N-acetylcysteine (NAC) against kidney damage induced by titanium dioxide nanoparticles (TiO2NP) through biochemical, histological, and immunohistochemical analyses. Forty rats were randomly divided into four groups of 10 animals each. Saline was administered intragastrically to control group for 14 days. In NAC group, 150 mg/kg NAC was injected intraperitoneally for 21 days. In TiO2NP group, TiO2NP at a dose of 50 mg/kg/day, dissolved in saline, was administered intragastrically for 14 days. TiO2NP + NAC group received 50 mg/kg/day TiO2NP for 14 days and 150 mg/kg NAC for 21 days, starting 7 days before TiO2NP administration. At the end of experiment, rats were anesthetized, serum samples were collected for biochemical analysis, and kidney tissue was removed for histological and immunohistochemical analyses. There was no significant change in body weight, kidney weight, or serum urea-creatinine levels between the groups. TiO2NP caused a significant increase in vacuolization and brush border loss scores in tubular cells, as well as scores for congestion and leukocyte infiltration. However, NAC supplementation significantly ameliorated these impairments. Additionally, TiO2NP significantly increased NF-kB, TNF-α, and caspase-3 immunoreactivities, as well as the number of PCNA-positive and TUNEL-positive cells. NAC treatment decreased all immunoreactivities and TUNEL-positive cells, but did not change the number of PCNA-positive cells after TiO2NP exposure. The results of the study showed that the toxic effects of TiO2NP on the kidneys, commonly encountered in daily life, can be mitigated by the anti-inflammatory and anti-apoptotic properties of NAC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Histology
Journal of Molecular Histology 生物-细胞生物学
CiteScore
5.90
自引率
0.00%
发文量
68
审稿时长
1 months
期刊介绍: The Journal of Molecular Histology publishes results of original research on the localization and expression of molecules in animal cells, tissues and organs. Coverage includes studies describing novel cellular or ultrastructural distributions of molecules which provide insight into biochemical or physiological function, development, histologic structure and disease processes. Major research themes of particular interest include: - Cell-Cell and Cell-Matrix Interactions; - Connective Tissues; - Development and Disease; - Neuroscience. Please note that the Journal of Molecular Histology does not consider manuscripts dealing with the application of immunological or other probes on non-standard laboratory animal models unless the results are clearly of significant and general biological importance. The Journal of Molecular Histology publishes full-length original research papers, review articles, short communications and letters to the editors. All manuscripts are typically reviewed by two independent referees. The Journal of Molecular Histology is a continuation of The Histochemical Journal.
期刊最新文献
Serum proteomic profiling reveals potential predictive indicators for coronary artery calcification in stable ischemic heart disease Protective effects of N-acetylcysteine against titanium dioxide nanoparticles-induced kidney damage in rats Curcumin protects rat endplate chondrocytes against IL-1β-induced apoptosis via Bcl-2/Bax regulation Research progress on ferroptosis in head and neck squamous cell carcinoma Nell-1 inhibits lipopolysaccharide-activated macrophages into M1 phenotype through the modulation of NF-κB pathway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1