Nihal Yasir, Yassir Makkawi, Baraa Ahmed, Ondrej Masek
{"title":"Food Waste Devolatilization Kinetics with Demonstration of Its Implementation in Computational Modeling of a Fluidized Bed Pyrolysis Reactor","authors":"Nihal Yasir, Yassir Makkawi, Baraa Ahmed, Ondrej Masek","doi":"10.1007/s12155-025-10835-x","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents the derivation of a kinetic model for the devolatilization of post-consumption food waste using thermogravimetric analysis (TGA). The derived model was implemented in an Eulerian-Eulerian Computational Fluid Dynamics (CFD) framework to simulate pyrolysis in a fluidized bed reactor operating at 550 °C. Due to the heterogeneity and complexity of food waste composition, the reaction function and devolatilization kinetics were identified using a staged decomposition approach. As determined by TGA, these stages correspond to the decomposition of protein, cellulose, and hemicellulose approximately between 270 and 300 °C, and the decomposition of lipids approximately between 350 and 400 °C. The activation energy, obtained using three different model-free iso-conversional methods, was consistent, with an average value of <span>\\({E}_{a}\\)</span> = 219.23 kJ/mol. The pyrolysis reaction was found to follow an order-based model, with the master plot method yielding an average reaction order of <span>\\(n\\)</span> = 10.3 and an Arrhenius frequency factor of <span>\\(A\\)</span> = 1.16 × 10<sup>19</sup> [(kmol/m<sup>3</sup>)<sup>1−<i>n</i></sup>/s]. The predicted distribution of pyrolysis products, validated against experimental data, highlights the robustness of the proposed analysis and its computational implementation. This methodology provides a strong foundation for further development and adaptation to simulate the pyrolysis of food waste and other diverse feedstocks, broadening its applicability to various types of biomass.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"18 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12155-025-10835-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEnergy Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12155-025-10835-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the derivation of a kinetic model for the devolatilization of post-consumption food waste using thermogravimetric analysis (TGA). The derived model was implemented in an Eulerian-Eulerian Computational Fluid Dynamics (CFD) framework to simulate pyrolysis in a fluidized bed reactor operating at 550 °C. Due to the heterogeneity and complexity of food waste composition, the reaction function and devolatilization kinetics were identified using a staged decomposition approach. As determined by TGA, these stages correspond to the decomposition of protein, cellulose, and hemicellulose approximately between 270 and 300 °C, and the decomposition of lipids approximately between 350 and 400 °C. The activation energy, obtained using three different model-free iso-conversional methods, was consistent, with an average value of \({E}_{a}\) = 219.23 kJ/mol. The pyrolysis reaction was found to follow an order-based model, with the master plot method yielding an average reaction order of \(n\) = 10.3 and an Arrhenius frequency factor of \(A\) = 1.16 × 1019 [(kmol/m3)1−n/s]. The predicted distribution of pyrolysis products, validated against experimental data, highlights the robustness of the proposed analysis and its computational implementation. This methodology provides a strong foundation for further development and adaptation to simulate the pyrolysis of food waste and other diverse feedstocks, broadening its applicability to various types of biomass.
期刊介绍:
BioEnergy Research fills a void in the rapidly growing area of feedstock biology research related to biomass, biofuels, and bioenergy. The journal publishes a wide range of articles, including peer-reviewed scientific research, reviews, perspectives and commentary, industry news, and government policy updates. Its coverage brings together a uniquely broad combination of disciplines with a common focus on feedstock biology and science, related to biomass, biofeedstock, and bioenergy production.