Jakob Heckel, Timo Bohlig, Lea Bonnington, Michael Leiss, Markus Haindl, Jürgen Hubbuch, Tobias Graf
{"title":"Rapid At-Line AAVX Affinity HPLC: Enabling Process Analytical Technology for Bioprocess Development of Adeno-Associated Virus Vectors","authors":"Jakob Heckel, Timo Bohlig, Lea Bonnington, Michael Leiss, Markus Haindl, Jürgen Hubbuch, Tobias Graf","doi":"10.1002/biot.202400656","DOIUrl":null,"url":null,"abstract":"<p>Recombinant adeno-associated virus (rAAV) vectors have emerged as a new class of therapeutic modal with the promise to treat or even cure hereditary and acquired diseases, but their consistent and efficient production remains challenging. To address these inadequacies, the implementation of process analytical technology (PAT) principles for the development of rAAV-based gene therapies holds the prospect of promoting greater product and process understanding. However, a substantial lack of suitable analytical tools during both upstream and downstream processing (DSP) hinders the ability to fully realize the potential of PAT for rAAVs. To fill this gap, our recently described AAVX affinity-based high-performance liquid chromatography (HPLC) method was assessed as an at-line PAT tool to determine the capsid titer and the percentage of filled capsids at various stages of the production process. Leveraging the fast and robust provision of these parameters, even for challenging samples, the benefits of this approach for improved process monitoring and control were demonstrated for samples generated both during fermentation and DSP. Given the versatility of our developed analytical method for different rAAV serotype and payload combinations, we eventually highlight its expansive opportunities to streamline process development and therefore contributing to high-quality and cost-efficient production of rAAV-based gene therapies.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"20 3","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biot.202400656","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400656","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Recombinant adeno-associated virus (rAAV) vectors have emerged as a new class of therapeutic modal with the promise to treat or even cure hereditary and acquired diseases, but their consistent and efficient production remains challenging. To address these inadequacies, the implementation of process analytical technology (PAT) principles for the development of rAAV-based gene therapies holds the prospect of promoting greater product and process understanding. However, a substantial lack of suitable analytical tools during both upstream and downstream processing (DSP) hinders the ability to fully realize the potential of PAT for rAAVs. To fill this gap, our recently described AAVX affinity-based high-performance liquid chromatography (HPLC) method was assessed as an at-line PAT tool to determine the capsid titer and the percentage of filled capsids at various stages of the production process. Leveraging the fast and robust provision of these parameters, even for challenging samples, the benefits of this approach for improved process monitoring and control were demonstrated for samples generated both during fermentation and DSP. Given the versatility of our developed analytical method for different rAAV serotype and payload combinations, we eventually highlight its expansive opportunities to streamline process development and therefore contributing to high-quality and cost-efficient production of rAAV-based gene therapies.
Biotechnology JournalBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍:
Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances.
In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office.
BTJ promotes a special emphasis on:
Systems Biotechnology
Synthetic Biology and Metabolic Engineering
Nanobiotechnology and Biomaterials
Tissue engineering, Regenerative Medicine and Stem cells
Gene Editing, Gene therapy and Immunotherapy
Omics technologies
Industrial Biotechnology, Biopharmaceuticals and Biocatalysis
Bioprocess engineering and Downstream processing
Plant Biotechnology
Biosafety, Biotech Ethics, Science Communication
Methods and Advances.