Application of Transformer-based Anomaly Detection in Dam Structural Strong Motion Monitoring Data

ce/papers Pub Date : 2025-03-18 DOI:10.1002/cepa.3165
Hong Xiang, Jiajian Zhu, Yi Zhang, Yuting Zhang, Xinhua Zhu
{"title":"Application of Transformer-based Anomaly Detection in Dam Structural Strong Motion Monitoring Data","authors":"Hong Xiang,&nbsp;Jiajian Zhu,&nbsp;Yi Zhang,&nbsp;Yuting Zhang,&nbsp;Xinhua Zhu","doi":"10.1002/cepa.3165","DOIUrl":null,"url":null,"abstract":"<p>In the context of structural monitoring systems, the persistent acquisition of high-fidelity data is crucial for ensuring the reliability of system outputs. However, anomalies are inevitably present due to the intricate operational status of sensing and acquisition devices. This study presents a neural network architecture predicated on the Transformer model, tailored for the detection and categorization of anomalies within dam structural health monitoring data. The temporal sequences of the monitoring data serve as direct inputs to the Transformer framework, with feature extraction facilitated through an elaborate six-layer encoder module. The input temporal sequences are eventually categorized into four discrete classes: normal, missing, drift, and burr. The experimental results substantiate the robust efficacy of the proposed approach across binary and multi-class classification paradigms. The deployment of this method on continuous monitoring data underscores its capacity to ensure the correctness of data, thereby bolstering the reliability of dam monitoring systems.</p>","PeriodicalId":100223,"journal":{"name":"ce/papers","volume":"8 2","pages":"749-759"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ce/papers","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cepa.3165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of structural monitoring systems, the persistent acquisition of high-fidelity data is crucial for ensuring the reliability of system outputs. However, anomalies are inevitably present due to the intricate operational status of sensing and acquisition devices. This study presents a neural network architecture predicated on the Transformer model, tailored for the detection and categorization of anomalies within dam structural health monitoring data. The temporal sequences of the monitoring data serve as direct inputs to the Transformer framework, with feature extraction facilitated through an elaborate six-layer encoder module. The input temporal sequences are eventually categorized into four discrete classes: normal, missing, drift, and burr. The experimental results substantiate the robust efficacy of the proposed approach across binary and multi-class classification paradigms. The deployment of this method on continuous monitoring data underscores its capacity to ensure the correctness of data, thereby bolstering the reliability of dam monitoring systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在结构监测系统中,持续采集高保真数据对于确保系统输出的可靠性至关重要。然而,由于传感和采集设备的运行状态错综复杂,异常情况不可避免地会出现。本研究提出了一种基于变压器模型的神经网络架构,专门用于大坝结构健康监测数据中异常情况的检测和分类。监测数据的时间序列是 Transformer 框架的直接输入,通过精心设计的六层编码器模块进行特征提取。输入的时间序列最终被分为四个离散类别:正常、缺失、漂移和毛刺。实验结果证明了所提出的方法在二元和多类分类范式中的强大功效。这种方法在连续监测数据上的应用,强调了其确保数据正确性的能力,从而提高了大坝监测系统的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Preface Seismic Performance Analysis Of Complex High-Rise Braced Frame Structure Of Coal Gasification Plant Application of Transformer-based Anomaly Detection in Dam Structural Strong Motion Monitoring Data Influence mechanism of the installation position of friction support on the dynamic characteristic of the subway station structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1