Research on Prediction model of Carotid-Femoral Pulse Wave Velocity: Based on Machine Learning Algorithm

IF 2.7 3区 医学 Q2 PERIPHERAL VASCULAR DISEASE Journal of Clinical Hypertension Pub Date : 2025-03-18 DOI:10.1111/jch.70017
Minghui Chen, Jing Xiong, Moran Li, Tao Hu, Yi Zhang
{"title":"Research on Prediction model of Carotid-Femoral Pulse Wave Velocity: Based on Machine Learning Algorithm","authors":"Minghui Chen,&nbsp;Jing Xiong,&nbsp;Moran Li,&nbsp;Tao Hu,&nbsp;Yi Zhang","doi":"10.1111/jch.70017","DOIUrl":null,"url":null,"abstract":"<p>Carotid-femoral pulse wave velocity (cf-PWV) is an important but difficult to obtain measure of arterial stiffness and an independent predictor of cardiovascular events and all-cause mortality. The objective of this study was to develop a predictive model for cf-PWV based on brachial-ankle pulse wave velocity (baPWV) and other the accessible clinical parameters.</p><p>This model aims to allow patients to estimate their cf-PWV in advance without the need for direct measurement. We selected participants of the Northern Shanghai community from 2013 to 2022 as the study object. The Pearson correlation coefficient was employed for correlation analysis in feature selection. The linear regression models demonstrated low root mean square error (RMSE), error term (<i>ε</i>), and <i>R</i><sup>2</sup> values, indicating good predictive performance. A Cox proportional hazards model revealed a significant association between machine learning-predicted cf-PWV and mortality risk, supporting the validity of prediction model. Using a threshold of cf-PWV greater than 10 m/s as the criterion, a classification prediction model was developed. Shapley Additive Explanations (SHAP) analysis was then applied to the Gradient Boosting model to elucidate the predictive mechanism of the optimal model. Without precise instruments, doctors often cannot determine a patient's cf-PWV. When the cf-PWV value predicted by the machine learning algorithm is high, patients can be recommended for more precise measurements to confirm the prediction and emphasize the importance of follow-up health management and psychological support. It is feasible to use a machine learning algorithm based on baPWV and other readily available clinical parameters to predict cf-PWV.</p>","PeriodicalId":50237,"journal":{"name":"Journal of Clinical Hypertension","volume":"27 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jch.70017","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Hypertension","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jch.70017","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0

Abstract

Carotid-femoral pulse wave velocity (cf-PWV) is an important but difficult to obtain measure of arterial stiffness and an independent predictor of cardiovascular events and all-cause mortality. The objective of this study was to develop a predictive model for cf-PWV based on brachial-ankle pulse wave velocity (baPWV) and other the accessible clinical parameters.

This model aims to allow patients to estimate their cf-PWV in advance without the need for direct measurement. We selected participants of the Northern Shanghai community from 2013 to 2022 as the study object. The Pearson correlation coefficient was employed for correlation analysis in feature selection. The linear regression models demonstrated low root mean square error (RMSE), error term (ε), and R2 values, indicating good predictive performance. A Cox proportional hazards model revealed a significant association between machine learning-predicted cf-PWV and mortality risk, supporting the validity of prediction model. Using a threshold of cf-PWV greater than 10 m/s as the criterion, a classification prediction model was developed. Shapley Additive Explanations (SHAP) analysis was then applied to the Gradient Boosting model to elucidate the predictive mechanism of the optimal model. Without precise instruments, doctors often cannot determine a patient's cf-PWV. When the cf-PWV value predicted by the machine learning algorithm is high, patients can be recommended for more precise measurements to confirm the prediction and emphasize the importance of follow-up health management and psychological support. It is feasible to use a machine learning algorithm based on baPWV and other readily available clinical parameters to predict cf-PWV.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Clinical Hypertension
Journal of Clinical Hypertension PERIPHERAL VASCULAR DISEASE-
CiteScore
5.80
自引率
7.10%
发文量
191
审稿时长
4-8 weeks
期刊介绍: The Journal of Clinical Hypertension is a peer-reviewed, monthly publication that serves internists, cardiologists, nephrologists, endocrinologists, hypertension specialists, primary care practitioners, pharmacists and all professionals interested in hypertension by providing objective, up-to-date information and practical recommendations on the full range of clinical aspects of hypertension. Commentaries and columns by experts in the field provide further insights into our original research articles as well as on major articles published elsewhere. Major guidelines for the management of hypertension are also an important feature of the Journal. Through its partnership with the World Hypertension League, JCH will include a new focus on hypertension and public health, including major policy issues, that features research and reviews related to disease characteristics and management at the population level.
期刊最新文献
Weight-Adjusted Waist Index May Predict Hypertension Plus Hyperuricemia Association Between Abdominal Obesity, Body Mass Index, and Hypertension in India: Evidence From a Large Nationally Representative Data Cluster-Based Analysis of Lipid Profiles and Inflammation in Association With Cardiovascular Disease Incidence and Mortality: A 17.5-Year Longitudinal Study Temporal Patterns in Blood Pressure Management Before and After Recent Clinical Trials and Guideline Recommendations Research on Prediction model of Carotid-Femoral Pulse Wave Velocity: Based on Machine Learning Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1