Jing-Yu Lin, Xu Guo, Ming-Hui Sun, Yifeng Zhang, Jun-Xia Lu
{"title":"Diverse Bone Matrix and Mineral Alterations in Osteoporosis with Different Causes: A Solid-State NMR Study.","authors":"Jing-Yu Lin, Xu Guo, Ming-Hui Sun, Yifeng Zhang, Jun-Xia Lu","doi":"10.1021/acsbiomaterials.4c01581","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoporosis (OP), which is a common skeletal disease with different causes, is prevalent in the aging population. Postmenopause women generally suffer from OP with bone loss due to estrogen deficiency. Diabetes is also associated with OP by complex metabolic mechanisms. Bone qualities of OP caused by aging were compared with those of the ovariectomy (OVX) model and the Type 2 diabetic model using Sprague-Dawley (SD) rats in our study. Combining with micro-computed tomography (μ-CT) and solid-state NMR (SSNMR) methods, this research studied bone changes in SD rats from tissue level to the molecular level. The studies revealed bone loss was most significant for cancellous bones but not for cortical bones in OP rats. However, at the molecular level, the content of HAP in cortical bone increased with aging, contributing to the brittleness of the bone. Triglyceride, as a senescence maker of osteocyte in cortical bone, was also identified to be closely associated with OP in aging and OVX rats but not in diabetic rats. This research suggests that changes of bone quality at the molecular level more objectively reflect the bone tissue reconstruction of OP with various causes rather than mere bone loss revealed by μ-CT analysis.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01581","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Osteoporosis (OP), which is a common skeletal disease with different causes, is prevalent in the aging population. Postmenopause women generally suffer from OP with bone loss due to estrogen deficiency. Diabetes is also associated with OP by complex metabolic mechanisms. Bone qualities of OP caused by aging were compared with those of the ovariectomy (OVX) model and the Type 2 diabetic model using Sprague-Dawley (SD) rats in our study. Combining with micro-computed tomography (μ-CT) and solid-state NMR (SSNMR) methods, this research studied bone changes in SD rats from tissue level to the molecular level. The studies revealed bone loss was most significant for cancellous bones but not for cortical bones in OP rats. However, at the molecular level, the content of HAP in cortical bone increased with aging, contributing to the brittleness of the bone. Triglyceride, as a senescence maker of osteocyte in cortical bone, was also identified to be closely associated with OP in aging and OVX rats but not in diabetic rats. This research suggests that changes of bone quality at the molecular level more objectively reflect the bone tissue reconstruction of OP with various causes rather than mere bone loss revealed by μ-CT analysis.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture