Accurate Prediction of CRISPR/Cas13a Guide Activity Using Feature Selection and Deep Learning.

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL Journal of Chemical Information and Modeling Pub Date : 2025-03-17 DOI:10.1021/acs.jcim.4c02438
Jiashun Fu, Xuyang Liu, Ruijie Deng, Xiue Jiang, Wensheng Cai, Haohao Fu, Xueguang Shao
{"title":"Accurate Prediction of CRISPR/Cas13a Guide Activity Using Feature Selection and Deep Learning.","authors":"Jiashun Fu, Xuyang Liu, Ruijie Deng, Xiue Jiang, Wensheng Cai, Haohao Fu, Xueguang Shao","doi":"10.1021/acs.jcim.4c02438","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR/Cas13a serves as a key tool for nucleic acid tests; therefore, accurate prediction of its activity is essential for creating robust and sensitive diagnosis. In this study, we create a dual-branch neural network model that achieves high prediction accuracy and classification performance across two independent CRISPR/Cas13a data sets, outperforming previously published models relying solely on sequence features. The model integrates direct sequence encoding with descriptive features and yields 99 key descriptive features out of 1553, extracted through statistical analysis, which critically influence guide-target interactions and Cas13a guide activity. By employing Shapley Additive Explanations and Integrated Gradients for feature importance analysis, we show that sequence composition, mismatch type and frequency, and the protospacer flanking site region are primary features. These findings underscore the importance of using descriptive features as complementary inputs to deep learning-based encoding and provide valuable insights into the mechanisms underlying guide-target interaction. All in all, this study not only introduces a reliable and efficient model for Cas13a guide activity prediction but also offers a foundation for future rational design efforts.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02438","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

CRISPR/Cas13a serves as a key tool for nucleic acid tests; therefore, accurate prediction of its activity is essential for creating robust and sensitive diagnosis. In this study, we create a dual-branch neural network model that achieves high prediction accuracy and classification performance across two independent CRISPR/Cas13a data sets, outperforming previously published models relying solely on sequence features. The model integrates direct sequence encoding with descriptive features and yields 99 key descriptive features out of 1553, extracted through statistical analysis, which critically influence guide-target interactions and Cas13a guide activity. By employing Shapley Additive Explanations and Integrated Gradients for feature importance analysis, we show that sequence composition, mismatch type and frequency, and the protospacer flanking site region are primary features. These findings underscore the importance of using descriptive features as complementary inputs to deep learning-based encoding and provide valuable insights into the mechanisms underlying guide-target interaction. All in all, this study not only introduces a reliable and efficient model for Cas13a guide activity prediction but also offers a foundation for future rational design efforts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
期刊最新文献
PolyConstruct: Adapting Biomolecular Simulation Pipelines for Polymers with PolyBuild, PolyConf, and PolyTop. Accurate Prediction of CRISPR/Cas13a Guide Activity Using Feature Selection and Deep Learning. Influence of Coverage Dependence on the Thermophysical Properties of Adsorbates and Its Impact on Microkinetic Models. Proteomic Learning of Gamma-Aminobutyric Acid (GABA) Receptor-Mediated Anesthesia. SELFprot: Effective and Efficient Multitask Finetuning Methods for Protein Parameter Prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1