{"title":"Accurate Prediction of CRISPR/Cas13a Guide Activity Using Feature Selection and Deep Learning.","authors":"Jiashun Fu, Xuyang Liu, Ruijie Deng, Xiue Jiang, Wensheng Cai, Haohao Fu, Xueguang Shao","doi":"10.1021/acs.jcim.4c02438","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR/Cas13a serves as a key tool for nucleic acid tests; therefore, accurate prediction of its activity is essential for creating robust and sensitive diagnosis. In this study, we create a dual-branch neural network model that achieves high prediction accuracy and classification performance across two independent CRISPR/Cas13a data sets, outperforming previously published models relying solely on sequence features. The model integrates direct sequence encoding with descriptive features and yields 99 key descriptive features out of 1553, extracted through statistical analysis, which critically influence guide-target interactions and Cas13a guide activity. By employing Shapley Additive Explanations and Integrated Gradients for feature importance analysis, we show that sequence composition, mismatch type and frequency, and the protospacer flanking site region are primary features. These findings underscore the importance of using descriptive features as complementary inputs to deep learning-based encoding and provide valuable insights into the mechanisms underlying guide-target interaction. All in all, this study not only introduces a reliable and efficient model for Cas13a guide activity prediction but also offers a foundation for future rational design efforts.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02438","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
CRISPR/Cas13a serves as a key tool for nucleic acid tests; therefore, accurate prediction of its activity is essential for creating robust and sensitive diagnosis. In this study, we create a dual-branch neural network model that achieves high prediction accuracy and classification performance across two independent CRISPR/Cas13a data sets, outperforming previously published models relying solely on sequence features. The model integrates direct sequence encoding with descriptive features and yields 99 key descriptive features out of 1553, extracted through statistical analysis, which critically influence guide-target interactions and Cas13a guide activity. By employing Shapley Additive Explanations and Integrated Gradients for feature importance analysis, we show that sequence composition, mismatch type and frequency, and the protospacer flanking site region are primary features. These findings underscore the importance of using descriptive features as complementary inputs to deep learning-based encoding and provide valuable insights into the mechanisms underlying guide-target interaction. All in all, this study not only introduces a reliable and efficient model for Cas13a guide activity prediction but also offers a foundation for future rational design efforts.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.