Investigation of the synergistic effect of metformin and FX11 on PANC-1 cell lines.

IF 4.3 2区 生物学 Q1 BIOLOGY Biological Research Pub Date : 2025-03-17 DOI:10.1186/s40659-025-00592-8
Melike Bayindir-Bilgic, Ezgi Duman, Deniz Turgut, Ayse Naz Kadikoylu, Nur Ekimci-Gurcan, Utku Ozbey, Aysegul Kuskucu, Omer F Bayrak
{"title":"Investigation of the synergistic effect of metformin and FX11 on PANC-1 cell lines.","authors":"Melike Bayindir-Bilgic, Ezgi Duman, Deniz Turgut, Ayse Naz Kadikoylu, Nur Ekimci-Gurcan, Utku Ozbey, Aysegul Kuskucu, Omer F Bayrak","doi":"10.1186/s40659-025-00592-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pancreatic cancer is among the most aggressive and malignant tumors and is a leading cause of cancer-related mortality. It is characterized by its metabolic Warburg effect and glucose dependence. Aerobic glycolysis is a key feature of metabolic reprogramming in cancer cells. This study investigates the combined effect of metformin and FX11, hypothesizing that disrupting cancer cell energetics through complementary mechanisms may result in a synergistic therapeutic effect. The combination of metformin and FX11 affects the axis that regulates vital functions in cancer cells; thus, the uncontrolled growth of tumor cells, especially those that use a lactose-dependent energy pathway, can be controlled. Several in vitro experiments were conducted to evaluate this hypothesis. PANC-1 cell proliferation was assessed using an MTS assay, lactate levels were measured via an LDH assay, and apoptosis was determined using a flow cytometry-based PE-annexin V assay. The downstream effects of metformin and FX11 treatment were evaluated via western blot analysis.</p><p><strong>Results: </strong>The findings of this study revealed that metformin and FX11 significantly decreased the viability of PANC-1 cells when used in combination, and this effect was achieved by significantly affecting the energy mechanism of the cells through the AMPKα axis. Furthermore, the lactate levels in PANC1 cells co-treated with metformin and FX11 were significantly decreased, while the increased cellular stress led the cells to apoptosis.</p><p><strong>Conclusions: </strong>Compared with metformin treatment alone, the combination treatment of metformin and FX11 stimulates cellular stress in pancreatic cancer and targets various energy processes that encourage cancer cells to undergo apoptosis. This study provides a novel therapeutic strategy for the treatment of pancreatic cancer.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"58 1","pages":"15"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912783/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40659-025-00592-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Pancreatic cancer is among the most aggressive and malignant tumors and is a leading cause of cancer-related mortality. It is characterized by its metabolic Warburg effect and glucose dependence. Aerobic glycolysis is a key feature of metabolic reprogramming in cancer cells. This study investigates the combined effect of metformin and FX11, hypothesizing that disrupting cancer cell energetics through complementary mechanisms may result in a synergistic therapeutic effect. The combination of metformin and FX11 affects the axis that regulates vital functions in cancer cells; thus, the uncontrolled growth of tumor cells, especially those that use a lactose-dependent energy pathway, can be controlled. Several in vitro experiments were conducted to evaluate this hypothesis. PANC-1 cell proliferation was assessed using an MTS assay, lactate levels were measured via an LDH assay, and apoptosis was determined using a flow cytometry-based PE-annexin V assay. The downstream effects of metformin and FX11 treatment were evaluated via western blot analysis.

Results: The findings of this study revealed that metformin and FX11 significantly decreased the viability of PANC-1 cells when used in combination, and this effect was achieved by significantly affecting the energy mechanism of the cells through the AMPKα axis. Furthermore, the lactate levels in PANC1 cells co-treated with metformin and FX11 were significantly decreased, while the increased cellular stress led the cells to apoptosis.

Conclusions: Compared with metformin treatment alone, the combination treatment of metformin and FX11 stimulates cellular stress in pancreatic cancer and targets various energy processes that encourage cancer cells to undergo apoptosis. This study provides a novel therapeutic strategy for the treatment of pancreatic cancer.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biological Research
Biological Research 生物-生物学
CiteScore
10.10
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: Biological Research is an open access, peer-reviewed journal that encompasses diverse fields of experimental biology, such as biochemistry, bioinformatics, biotechnology, cell biology, cancer, chemical biology, developmental biology, evolutionary biology, genetics, genomics, immunology, marine biology, microbiology, molecular biology, neuroscience, plant biology, physiology, stem cell research, structural biology and systems biology.
期刊最新文献
Interactive and evolutionary effect of CASZ1 gene variants on varicose veins susceptibility in South Asian Indians. Investigation of the synergistic effect of metformin and FX11 on PANC-1 cell lines. Recent advances in the mechanisms of PD-L1 expression in gastric cancer: a review. Protective role of extracellular vesicles against oxidative DNA damage. Endocannabinoid system upregulates the enrichment and differentiation of human iPSC- derived spermatogonial stem cells via CB2R agonism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1