Pub Date : 2024-11-17DOI: 10.1186/s40659-024-00567-1
Luis Labrador, Leonardo Rodriguez, Sebastián Beltran, Fernanda Hernandez, Laura Gomez, Patricia Ojeda, Cristian Bergmann, Melissa Calegaro-Nassif, Bredford Kerr, Danilo B Medinas, Patricio Manque, Ute Woehlbier
Amyotrophic lateral sclerosis (ALS) is a debilitating and fatal paralytic disorder associated with motor neuron death. Mutant superoxide dismutase 1 (SOD1) misfolding and aggregation have been linked to familial ALS, with the accumulation of abnormal wild-type SOD1 species being also observed in postmortem tissue of sporadic ALS cases. Both wild-type and mutated SOD1 are reported to contribute to motoneuron cell death. The autophagic pathway has been shown to be dysregulated in ALS. Recent evidence suggests a dual time-dependent role of autophagy in the progression of the disease. PACER, also called RUBCNL (Rubicon-like), is an enhancer of autophagy and has been found diminished in its levels during ALS pathology in mice and humans. Pacer loss of function disturbs the autophagy process and leads to the accumulation of SOD1 aggregates, as well as sensitizes neurons to death. Therefore, here we investigated if constitutive overexpression of PACER in neurons since early development is beneficial in an in vivo model of ALS. We generated a transgenic mouse model overexpressing human PACER in neurons, which then was crossbred with the mutant SOD1G93A ALS mouse model. Unexpectedly, PACER/SOD1G93A double transgenic mice exhibited an earlier disease onset and shorter lifespan than did littermate SOD1G93A mice. The overexpression of PACER in neurons in vivo and in vitro increased the accumulation of SOD1 aggregates, possibly due to impaired autophagy. These results suggest that similar to Pacer loss-of function, Pacer gain-of function is detrimental to autophagy, increases SOD1 aggregation and worsens ALS pathogenesis. In a wider context, our results indicate the requirement to maintain a fine balance of PACER protein levels to sustain proteostasis.
肌萎缩性脊髓侧索硬化症(ALS)是一种与运动神经元死亡相关的衰弱性、致命性瘫痪疾病。突变型超氧化物歧化酶 1(SOD1)的错误折叠和聚集与家族性肌萎缩侧索硬化症有关,在偶发性肌萎缩侧索硬化症病例的死后组织中也可观察到异常野生型 SOD1 的积累。据报道,野生型和突变型 SOD1 都会导致运动神经元细胞死亡。自噬途径已被证明在 ALS 中失调。最近的证据表明,自噬在疾病的发展过程中起着双重的时间依赖性作用。PACER又称RUBCNL(鲁比肯样),是一种自噬增强因子,在小鼠和人类的ALS病理过程中发现其水平降低。Pacer 功能缺失会扰乱自噬过程,导致 SOD1 聚集,并使神经元对死亡敏感。因此,我们在此研究了在 ALS 的体内模型中,神经元自早期发育以来组成性过表达 PACER 是否有益。我们生成了一种在神经元中过表达人 PACER 的转基因小鼠模型,然后将其与突变型 SOD1G93A ALS 小鼠模型杂交。出乎意料的是,PACER/SOD1G93A 双转基因小鼠比同种 SOD1G93A 小鼠发病更早,寿命更短。在体内和体外神经元中过表达 PACER 会增加 SOD1 聚集物的积累,这可能是由于自噬功能受损所致。这些结果表明,与 Pacer 功能缺失类似,Pacer 功能获得也不利于自噬、增加 SOD1 聚集并恶化 ALS 发病机制。从更广泛的角度来看,我们的研究结果表明,维持蛋白稳态需要维持 PACER 蛋白水平的微妙平衡。
{"title":"Overexpression of autophagy enhancer PACER/RUBCNL in neurons accelerates disease in the SOD1<sup>G93A</sup> ALS mouse model.","authors":"Luis Labrador, Leonardo Rodriguez, Sebastián Beltran, Fernanda Hernandez, Laura Gomez, Patricia Ojeda, Cristian Bergmann, Melissa Calegaro-Nassif, Bredford Kerr, Danilo B Medinas, Patricio Manque, Ute Woehlbier","doi":"10.1186/s40659-024-00567-1","DOIUrl":"10.1186/s40659-024-00567-1","url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis (ALS) is a debilitating and fatal paralytic disorder associated with motor neuron death. Mutant superoxide dismutase 1 (SOD1) misfolding and aggregation have been linked to familial ALS, with the accumulation of abnormal wild-type SOD1 species being also observed in postmortem tissue of sporadic ALS cases. Both wild-type and mutated SOD1 are reported to contribute to motoneuron cell death. The autophagic pathway has been shown to be dysregulated in ALS. Recent evidence suggests a dual time-dependent role of autophagy in the progression of the disease. PACER, also called RUBCNL (Rubicon-like), is an enhancer of autophagy and has been found diminished in its levels during ALS pathology in mice and humans. Pacer loss of function disturbs the autophagy process and leads to the accumulation of SOD1 aggregates, as well as sensitizes neurons to death. Therefore, here we investigated if constitutive overexpression of PACER in neurons since early development is beneficial in an in vivo model of ALS. We generated a transgenic mouse model overexpressing human PACER in neurons, which then was crossbred with the mutant SOD1<sup>G93A</sup> ALS mouse model. Unexpectedly, PACER/SOD1<sup>G93A</sup> double transgenic mice exhibited an earlier disease onset and shorter lifespan than did littermate SOD1<sup>G93A</sup> mice. The overexpression of PACER in neurons in vivo and in vitro increased the accumulation of SOD1 aggregates, possibly due to impaired autophagy. These results suggest that similar to Pacer loss-of function, Pacer gain-of function is detrimental to autophagy, increases SOD1 aggregation and worsens ALS pathogenesis. In a wider context, our results indicate the requirement to maintain a fine balance of PACER protein levels to sustain proteostasis.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"86"},"PeriodicalIF":4.3,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571584/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The aberrant expression of placental imprinted genes due to epigenetic alterations during pregnancy can impact fetal development. We investigated the impact of dietary modification of low vitamin B12 with varying doses of folic acid on the epigenetic control of imprinted genes and fetal development using a transgenerational model of C57BL/6J mice. The animals were kept on four distinct dietary combinations based on low vitamin B12 levels and modulated folic acid, mated in the F0 generation within each group. In the F1 generation, each group of mice is split into two subgroups; the sustained group was kept on the same diet, while the transient group was fed a regular control diet. After mating, maternal placenta (F1) and fetal tissues (F2) were isolated on day 20 of gestation. We observed a generation-wise opposite promoter CpG methylation and gene expression trend of the two developmental genes Dlk1 and Grb10, with enhanced gene expression in both the sustained and transient experimental groups in F1 placentae. When fetal development characteristics and gene expression were correlated, there was a substantial negative association between placental weight and Dlk1 expression (r = - 0.49, p < 0.05) and between crown-rump length and Grb10 expression (r = - 0.501, p < 0.05) in fetuses of the F2 generation. Consistent with these results, we also found that H3K4me3 at the promoter level of these genes is negatively associated with all fetal growth parameters. Overall, our findings suggest that balancing vitamin B12 and folic acid levels is important for maintaining the transcriptional status of imprinted genes and fetal development.
{"title":"Enrichment of trimethyl histone 3 lysine 4 in the Dlk1 and Grb10 genes affects pregnancy outcomes due to dietary manipulation of excess folic acid and low vitamin B12.","authors":"Divika Sapehia, Aatish Mahajan, Parampal Singh, Jyotdeep Kaur","doi":"10.1186/s40659-024-00557-3","DOIUrl":"10.1186/s40659-024-00557-3","url":null,"abstract":"<p><p>The aberrant expression of placental imprinted genes due to epigenetic alterations during pregnancy can impact fetal development. We investigated the impact of dietary modification of low vitamin B12 with varying doses of folic acid on the epigenetic control of imprinted genes and fetal development using a transgenerational model of C57BL/6J mice. The animals were kept on four distinct dietary combinations based on low vitamin B12 levels and modulated folic acid, mated in the F0 generation within each group. In the F1 generation, each group of mice is split into two subgroups; the sustained group was kept on the same diet, while the transient group was fed a regular control diet. After mating, maternal placenta (F1) and fetal tissues (F2) were isolated on day 20 of gestation. We observed a generation-wise opposite promoter CpG methylation and gene expression trend of the two developmental genes Dlk1 and Grb10, with enhanced gene expression in both the sustained and transient experimental groups in F1 placentae. When fetal development characteristics and gene expression were correlated, there was a substantial negative association between placental weight and Dlk1 expression (r = - 0.49, p < 0.05) and between crown-rump length and Grb10 expression (r = - 0.501, p < 0.05) in fetuses of the F2 generation. Consistent with these results, we also found that H3K4me3 at the promoter level of these genes is negatively associated with all fetal growth parameters. Overall, our findings suggest that balancing vitamin B12 and folic acid levels is important for maintaining the transcriptional status of imprinted genes and fetal development.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"85"},"PeriodicalIF":4.3,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562088/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142614695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-10DOI: 10.1186/s40659-024-00556-4
Javiera Ortiz-Severín, Christian Hodar, Camila Stuardo, Constanza Aguado-Norese, Felipe Maza, Mauricio González, Verónica Cambiazo
Background: Aquaculture and salmon farming can cause environmental problems due to the pollution of the surrounding waters with nutrients, solid wastes and chemicals, such as antibiotics, which are used for disease control in the aquaculture facilities. Increasing antibiotic resistance in human-impacted environments, such as coastal waters with aquaculture activity, is linked to the widespread use of antibiotics, even at sub-lethal concentrations. In Chile, the world's second largest producer of salmon, aquaculture is considered the primary source of antibiotics residues in the coastal waters of northern Patagonia. Here, we evaluated whether the structure and diversity of marine bacterial community, the richness of antibiotic resistance bacteria and the frequency of antibiotic resistance genes increase in communities from the surface seawater of an area with salmon farming activities, in comparison with communities from an area without major anthropogenic disturbance.
Results: The taxonomic structure of bacterial community was significantly different between areas with and without aquaculture production. Growth of the culturable fraction under controlled laboratory conditions showed that, in comparison with the undisturbed area, the bacterial community from salmon farms displayed a higher frequency of colonies resistant to the antibiotics used by the salmon industry. A higher adaptation to antibiotics was revealed by a greater proportion of multi-resistant bacteria isolated from the surface seawater of the salmon farming area. Furthermore, metagenomics data revealed a significant higher abundance of antibiotic resistant genes conferring resistance to 11 antibiotic families in the community from salmon farms, indicating that the proportion of bacteria carrying the resistance determinants was overall higher in salmon farms than in the undisturbed site.
Conclusions: Our results revealed an association between bacterial communities and antibiotic resistance from surface seawater of a coastal area of Chile. Although the total bacterial community may appear comparable between sites, the cultivation technique allowed to expose a higher prevalence of antibiotic resistant bacteria in the salmon farming area. Moreover, we demonstrated that metagenomics (culture-independent) and phenotypic (culture-dependent) methods are complementary to evaluate the bacterial communities' risk for antibiotic resistance, and that a human-influenced environment (such as salmon farms) can potentiate bacteria to adapt to environmental stresses, such as antibiotics.
{"title":"Impact of salmon farming in the antibiotic resistance and structure of marine bacterial communities from surface seawater of a northern Patagonian area of Chile.","authors":"Javiera Ortiz-Severín, Christian Hodar, Camila Stuardo, Constanza Aguado-Norese, Felipe Maza, Mauricio González, Verónica Cambiazo","doi":"10.1186/s40659-024-00556-4","DOIUrl":"10.1186/s40659-024-00556-4","url":null,"abstract":"<p><strong>Background: </strong>Aquaculture and salmon farming can cause environmental problems due to the pollution of the surrounding waters with nutrients, solid wastes and chemicals, such as antibiotics, which are used for disease control in the aquaculture facilities. Increasing antibiotic resistance in human-impacted environments, such as coastal waters with aquaculture activity, is linked to the widespread use of antibiotics, even at sub-lethal concentrations. In Chile, the world's second largest producer of salmon, aquaculture is considered the primary source of antibiotics residues in the coastal waters of northern Patagonia. Here, we evaluated whether the structure and diversity of marine bacterial community, the richness of antibiotic resistance bacteria and the frequency of antibiotic resistance genes increase in communities from the surface seawater of an area with salmon farming activities, in comparison with communities from an area without major anthropogenic disturbance.</p><p><strong>Results: </strong>The taxonomic structure of bacterial community was significantly different between areas with and without aquaculture production. Growth of the culturable fraction under controlled laboratory conditions showed that, in comparison with the undisturbed area, the bacterial community from salmon farms displayed a higher frequency of colonies resistant to the antibiotics used by the salmon industry. A higher adaptation to antibiotics was revealed by a greater proportion of multi-resistant bacteria isolated from the surface seawater of the salmon farming area. Furthermore, metagenomics data revealed a significant higher abundance of antibiotic resistant genes conferring resistance to 11 antibiotic families in the community from salmon farms, indicating that the proportion of bacteria carrying the resistance determinants was overall higher in salmon farms than in the undisturbed site.</p><p><strong>Conclusions: </strong>Our results revealed an association between bacterial communities and antibiotic resistance from surface seawater of a coastal area of Chile. Although the total bacterial community may appear comparable between sites, the cultivation technique allowed to expose a higher prevalence of antibiotic resistant bacteria in the salmon farming area. Moreover, we demonstrated that metagenomics (culture-independent) and phenotypic (culture-dependent) methods are complementary to evaluate the bacterial communities' risk for antibiotic resistance, and that a human-influenced environment (such as salmon farms) can potentiate bacteria to adapt to environmental stresses, such as antibiotics.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"84"},"PeriodicalIF":4.3,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552226/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142614706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1186/s40659-024-00564-4
Ting Jiang, Chengxiu Zhang, Xinjing Cao, Yingpu Tian, Han Cai, Shuangbo Kong, Jinhua Lu, Haibin Wang, Zhongxian Lu
Backgroud: abnormalities or defects in oocyte meiosis can result in decreased oocyte quality, reduced ovarian reserve, and female diseases. However, the mechanisms of oocyte meiosis remain largely unknown, especially epigenetic regulation. Here, we explored the role of EZH1/2 (histone methyltransferase of H3K27) in mouse oocyte meiosis by inhibiting its activity and deleting its gene.
Results: with embryonic ovary cultured in vitro, EZH1/2 was demonstrated to be essential for oocyte development during meiosis prophase I in mice. Activity inhibition or gene knockout of EZH1/2 resulted in cell apoptosis and a reduction in oocyte numbers within embryonic ovaries. By observing the expression of some meiotic marker protein (γ-H2AX, diplotene stage marker MSY2 and synapsis complex protein SCP1), we found that function deficiency of EZH1/2 resulted in failure of DNA double-strand breaks (DSBs) repair and break of meiotic progression in fetal mouse ovaries. Moreover, Ezh1/2 deficiency led to the suppression of ATM (Ataxia Telangiectasia Mutated kinase) phosphorylation and a decrease in the expression of key DNA repair proteins Hormad1, Mre11, Rad50, and Nbs1 in fetal mouse ovaries, underscoring the enzyme's pivotal role in initiating DNA repair. RNA-seq analysis revealed that Ezh1/2-deletion induced abnormal expression of multiple genes involved into several function of oocyte development in embryonic ovaries. Knockout of Ezh1/2 in ovaries also affected the levels of H3K9me3 and H4K20me2, as well as the expression of their target genes L3mbtl4 and Fbxo44.
Conclusions: our study demonstrated that EZH1/2 plays a role in the DSBs repair in oocyte meiosis prophase I via multiple mechanisms and offers new insights into the physiological regulatory role of histone modification in fetal oocyte guardianship and female fertility.
{"title":"EZH1/2 plays critical roles in oocyte meiosis prophase I in mice.","authors":"Ting Jiang, Chengxiu Zhang, Xinjing Cao, Yingpu Tian, Han Cai, Shuangbo Kong, Jinhua Lu, Haibin Wang, Zhongxian Lu","doi":"10.1186/s40659-024-00564-4","DOIUrl":"10.1186/s40659-024-00564-4","url":null,"abstract":"<p><strong>Backgroud: </strong>abnormalities or defects in oocyte meiosis can result in decreased oocyte quality, reduced ovarian reserve, and female diseases. However, the mechanisms of oocyte meiosis remain largely unknown, especially epigenetic regulation. Here, we explored the role of EZH1/2 (histone methyltransferase of H3K27) in mouse oocyte meiosis by inhibiting its activity and deleting its gene.</p><p><strong>Results: </strong>with embryonic ovary cultured in vitro, EZH1/2 was demonstrated to be essential for oocyte development during meiosis prophase I in mice. Activity inhibition or gene knockout of EZH1/2 resulted in cell apoptosis and a reduction in oocyte numbers within embryonic ovaries. By observing the expression of some meiotic marker protein (γ-H2AX, diplotene stage marker MSY2 and synapsis complex protein SCP1), we found that function deficiency of EZH1/2 resulted in failure of DNA double-strand breaks (DSBs) repair and break of meiotic progression in fetal mouse ovaries. Moreover, Ezh1/2 deficiency led to the suppression of ATM (Ataxia Telangiectasia Mutated kinase) phosphorylation and a decrease in the expression of key DNA repair proteins Hormad1, Mre11, Rad50, and Nbs1 in fetal mouse ovaries, underscoring the enzyme's pivotal role in initiating DNA repair. RNA-seq analysis revealed that Ezh1/2-deletion induced abnormal expression of multiple genes involved into several function of oocyte development in embryonic ovaries. Knockout of Ezh1/2 in ovaries also affected the levels of H3K9me3 and H4K20me2, as well as the expression of their target genes L3mbtl4 and Fbxo44.</p><p><strong>Conclusions: </strong>our study demonstrated that EZH1/2 plays a role in the DSBs repair in oocyte meiosis prophase I via multiple mechanisms and offers new insights into the physiological regulatory role of histone modification in fetal oocyte guardianship and female fertility.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"83"},"PeriodicalIF":4.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545252/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1186/s40659-024-00563-5
Guilherme Rocha, Melissa Gómez, Camila Baeza, Francisco Salinas, Claudio Martínez, Eduardo I Kessi-Pérez
Domestication can be understood as a symbiotic relationship that benefits both domesticator and domesticated species, involving multiple genetic changes that configure the phenotype of the domesticated species. One of the most important domesticated species is the yeast Saccharomyces cerevisiae, with both domesticated strains used for different fermentations processes for thousands of years and wild strains existing only in environments without human intervention; however, little is known about the phenotypic effects associated with its domestication. In the present work, we studied the effect of domestication on yeast TORC1 activation, a pleiotropic signalling pathway conserved across the eukaryotic domain. To achieve this goal, we improved a previously generated methodology to assess TORC1 activation, which turned out to be as effective as the original one but also presents several practical advantages for its application (such as facilitating confirmation of transformants and putting the Luc reporter gene under the control of the same PRPL26A promoter for each transformed strain). We then generated a mapping population, the so-called TOMAN-G population, derived from the "1002 Yeast Genomes Project" population, the most comprehensive catalogue of the genetic variation in yeasts. Finally, strains belonging to the TOMAN-G population were phenotyped for TORC1 activation, and then we compared the results obtained between yeast strains with different ecological origins, finding differences in TORC1 activation between wild and domesticated strains, particularly wine strains. These results are indicative of the effect of domestication on TORC1 activation, specifically that the different evolutionary trajectories of wild and domesticated strains have in fact caused differences in the activation of this pathway; furthermore, the phenotypic data obtained in this work could be used to continue underlying the genetic bases of TORC1 activation, a process that is still not fully understood, using techniques such as GWAS to search for specific genetic variants underlying the observed phenotypic variability and phylogenetic tree inferences to gain insight into the evolutionary relationships between these genetic variants.
{"title":"Phenotyping of a new yeast mapping population reveals differences in the activation of the TORC1 signalling pathway between wild and domesticated yeast strains.","authors":"Guilherme Rocha, Melissa Gómez, Camila Baeza, Francisco Salinas, Claudio Martínez, Eduardo I Kessi-Pérez","doi":"10.1186/s40659-024-00563-5","DOIUrl":"10.1186/s40659-024-00563-5","url":null,"abstract":"<p><p>Domestication can be understood as a symbiotic relationship that benefits both domesticator and domesticated species, involving multiple genetic changes that configure the phenotype of the domesticated species. One of the most important domesticated species is the yeast Saccharomyces cerevisiae, with both domesticated strains used for different fermentations processes for thousands of years and wild strains existing only in environments without human intervention; however, little is known about the phenotypic effects associated with its domestication. In the present work, we studied the effect of domestication on yeast TORC1 activation, a pleiotropic signalling pathway conserved across the eukaryotic domain. To achieve this goal, we improved a previously generated methodology to assess TORC1 activation, which turned out to be as effective as the original one but also presents several practical advantages for its application (such as facilitating confirmation of transformants and putting the Luc reporter gene under the control of the same P<sub>RPL26A</sub> promoter for each transformed strain). We then generated a mapping population, the so-called TOMAN-G population, derived from the \"1002 Yeast Genomes Project\" population, the most comprehensive catalogue of the genetic variation in yeasts. Finally, strains belonging to the TOMAN-G population were phenotyped for TORC1 activation, and then we compared the results obtained between yeast strains with different ecological origins, finding differences in TORC1 activation between wild and domesticated strains, particularly wine strains. These results are indicative of the effect of domestication on TORC1 activation, specifically that the different evolutionary trajectories of wild and domesticated strains have in fact caused differences in the activation of this pathway; furthermore, the phenotypic data obtained in this work could be used to continue underlying the genetic bases of TORC1 activation, a process that is still not fully understood, using techniques such as GWAS to search for specific genetic variants underlying the observed phenotypic variability and phylogenetic tree inferences to gain insight into the evolutionary relationships between these genetic variants.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"82"},"PeriodicalIF":4.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545388/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1186/s40659-024-00560-8
Paulina E Larenas, Pilar Cárdenas, Monserrat Aguirre-Delgadillo, Carlos Moris, Dulce E Casarini, Zoe Vallotton, Minolfa C Prieto, Alexis A Gonzalez
Background: During diabetes, prorenin is highly produced by the renal collecting ducts. The binding of prorenin to (pro)renin receptor (PRR) on the apical plasma membrane triggers intracellular profibrotic genes, including TGF-β and CTGF. However, the underlying mechanisms contributing to the stimulation of these pathways remain unclear. Hence, we hypothesize that the glucose transporter-1 (GLUT1) favors the PRR-dependent stimulation of TGF-β and CTGF in the distal nephron segments during high glucose (HG) conditions.
Methods: To test this hypothesis, primary cultured renal inner medullary collecting duct (IMCD) cells were treated with normal glucose (NG, 5 mM) or high glucose (HG, 25 mM) for 48 h in the presence or absence of the GLUT1-specific inhibitor BAY 876 (2 nM). Additionally, IMCD cells were treated with the PRR antagonist PRO20. The expression of TGF-β and CTGF was quantified by immunoblot and qRT-PCR.
Results: HG increased GLUT1 mRNA and protein abundance, while BAY 876 inhibited these responses. HG treatment upregulated PRR, but the concomitant treatment with BAY 876 partially prevented this effect. TGF-β and CTGF expressions were augmented in IMCD cells treated with HG. However, PRO20 prevented the increases in TGF-β but not those of CTGF. GLUT1 inhibition partially prevented the increases in reactive oxygen species (ROS) during HG while PRO20 did not. ROS scavenging impaired CTGF upregulation during HG conditions. Additionally, long-term exposure to HG increases lipid peroxidation and reduced cell viability.
Conclusions: The data indicate that glucose transportation via GLUT1 is implicated in the PRR-dependent upregulation of TGF-β while CTGF is mediated mainly via a mechanism depending on ROS formation in renal medullary collecting duct cells.
{"title":"GLUT1 and prorenin receptor mediate differential regulation of TGF-β and CTGF in renal inner medullary collecting duct cells during high glucose conditions.","authors":"Paulina E Larenas, Pilar Cárdenas, Monserrat Aguirre-Delgadillo, Carlos Moris, Dulce E Casarini, Zoe Vallotton, Minolfa C Prieto, Alexis A Gonzalez","doi":"10.1186/s40659-024-00560-8","DOIUrl":"10.1186/s40659-024-00560-8","url":null,"abstract":"<p><strong>Background: </strong>During diabetes, prorenin is highly produced by the renal collecting ducts. The binding of prorenin to (pro)renin receptor (PRR) on the apical plasma membrane triggers intracellular profibrotic genes, including TGF-β and CTGF. However, the underlying mechanisms contributing to the stimulation of these pathways remain unclear. Hence, we hypothesize that the glucose transporter-1 (GLUT1) favors the PRR-dependent stimulation of TGF-β and CTGF in the distal nephron segments during high glucose (HG) conditions.</p><p><strong>Methods: </strong>To test this hypothesis, primary cultured renal inner medullary collecting duct (IMCD) cells were treated with normal glucose (NG, 5 mM) or high glucose (HG, 25 mM) for 48 h in the presence or absence of the GLUT1-specific inhibitor BAY 876 (2 nM). Additionally, IMCD cells were treated with the PRR antagonist PRO20. The expression of TGF-β and CTGF was quantified by immunoblot and qRT-PCR.</p><p><strong>Results: </strong>HG increased GLUT1 mRNA and protein abundance, while BAY 876 inhibited these responses. HG treatment upregulated PRR, but the concomitant treatment with BAY 876 partially prevented this effect. TGF-β and CTGF expressions were augmented in IMCD cells treated with HG. However, PRO20 prevented the increases in TGF-β but not those of CTGF. GLUT1 inhibition partially prevented the increases in reactive oxygen species (ROS) during HG while PRO20 did not. ROS scavenging impaired CTGF upregulation during HG conditions. Additionally, long-term exposure to HG increases lipid peroxidation and reduced cell viability.</p><p><strong>Conclusions: </strong>The data indicate that glucose transportation via GLUT1 is implicated in the PRR-dependent upregulation of TGF-β while CTGF is mediated mainly via a mechanism depending on ROS formation in renal medullary collecting duct cells.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"81"},"PeriodicalIF":4.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542404/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Conventional pre-genomics breeding methodologies have significantly improved crop yields since the mid-twentieth century. Genomics provides breeders with advanced tools for whole-genome study, enabling a direct genotype-phenotype analysis. This shift has led to precise and efficient crop development through genomics-based approaches, including molecular markers, genomic selection, and genome editing. Molecular markers, such as SNPs, are crucial for identifying genomic regions linked to important traits, enhancing breeding accuracy and efficiency. Genomic resources viz. genetic markers, reference genomes, sequence and protein databases, transcriptomes, and gene expression profiles, are vital in plant breeding and aid in the identification of key traits, understanding genetic diversity, assist in genomic mapping, support marker-assisted selection and speeding up breeding programs. Advanced techniques like CRISPR/Cas9 allow precise gene modification, accelerating breeding processes. Key techniques like Genome-Wide Association study (GWAS), Marker-Assisted Selection (MAS), and Genomic Selection (GS) enable precise trait selection and prediction of breeding outcomes, improving crop yield, disease resistance, and stress tolerance. These tools are handy for complex traits influenced by multiple genes and environmental factors. This paper explores new genomic technologies like molecular markers, genomic selection, and genome editing for plant breeding showcasing their impact on developing new plant varieties.
{"title":"Advances in genomic tools for plant breeding: harnessing DNA molecular markers, genomic selection, and genome editing.","authors":"Rahul Kumar, Sankar Prasad Das, Burhan Uddin Choudhury, Amit Kumar, Nitish Ranjan Prakash, Ramlakhan Verma, Mridul Chakraborti, Ayam Gangarani Devi, Bijoya Bhattacharjee, Rekha Das, Bapi Das, H Lembisana Devi, Biswajit Das, Santoshi Rawat, Vinay Kumar Mishra","doi":"10.1186/s40659-024-00562-6","DOIUrl":"10.1186/s40659-024-00562-6","url":null,"abstract":"<p><p>Conventional pre-genomics breeding methodologies have significantly improved crop yields since the mid-twentieth century. Genomics provides breeders with advanced tools for whole-genome study, enabling a direct genotype-phenotype analysis. This shift has led to precise and efficient crop development through genomics-based approaches, including molecular markers, genomic selection, and genome editing. Molecular markers, such as SNPs, are crucial for identifying genomic regions linked to important traits, enhancing breeding accuracy and efficiency. Genomic resources viz. genetic markers, reference genomes, sequence and protein databases, transcriptomes, and gene expression profiles, are vital in plant breeding and aid in the identification of key traits, understanding genetic diversity, assist in genomic mapping, support marker-assisted selection and speeding up breeding programs. Advanced techniques like CRISPR/Cas9 allow precise gene modification, accelerating breeding processes. Key techniques like Genome-Wide Association study (GWAS), Marker-Assisted Selection (MAS), and Genomic Selection (GS) enable precise trait selection and prediction of breeding outcomes, improving crop yield, disease resistance, and stress tolerance. These tools are handy for complex traits influenced by multiple genes and environmental factors. This paper explores new genomic technologies like molecular markers, genomic selection, and genome editing for plant breeding showcasing their impact on developing new plant varieties.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"80"},"PeriodicalIF":4.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542492/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1186/s40659-024-00554-6
Daniel Sandoval, Jessica Mella, Jorge Ojeda, Francisca Bermedo-García, Marcela Low, Sylvain Marcellini, Maite A Castro, Mariana Casas, Enrique Jaimovich, Juan Pablo Henríquez
Background: Vitamin C plays key roles in cellular homeostasis, functioning as a potent antioxidant and a positive regulator of cell differentiation. In skeletal muscle, the vitamin C/sodium co-transporter SVCT2 is preferentially expressed in oxidative slow fibers. SVCT2 is up-regulated during the early fusion of primary myoblasts and decreases during initial myotube growth, indicating the relevance of vitamin C uptake via SVCT2 for early skeletal muscle differentiation and fiber-type definition. However, our understanding of SVCT2 expression and function in adult skeletal muscles is still limited.
Results: In this study, we demonstrate that SVCT2 exhibits an intracellular distribution in chicken slow skeletal muscles, following a highly organized striated pattern. A similar distribution was observed in human muscle samples, chicken cultured myotubes, and isolated mouse myofibers. Immunohistochemical analyses, combined with biochemical cell fractionation experiments, reveal a strong co-localization of SVCT2 with intracellular detergent-soluble membrane fractions at the central sarcomeric M-band, where it co-solubilizes with sarcoplasmic reticulum proteins. Remarkably, electrical stimulation of cultured myofibers induces the redistribution of SVCT2 into a vesicular pattern.
Conclusions: Our results provide novel insights into the dynamic roles of SVCT2 in different intracellular compartments in response to functional demands.
背景:维生素 C 在细胞平衡中发挥着关键作用,它是一种强效抗氧化剂,也是细胞分化的积极调节剂。在骨骼肌中,维生素 C/钠共转运体 SVCT2 优先在氧化性慢纤维中表达。SVCT2 在原发性肌母细胞的早期融合过程中上调,在最初的肌管生长过程中下降,这表明通过 SVCT2 吸收维生素 C 与骨骼肌的早期分化和纤维类型定义有关。然而,我们对 SVCT2 在成年骨骼肌中的表达和功能的了解仍然有限:在这项研究中,我们证明了 SVCT2 在鸡骨骼慢肌中呈现细胞内分布,呈高度有序的条纹状分布。在人类肌肉样本、鸡培养的肌管和分离的小鼠肌纤维中也观察到了类似的分布。免疫组化分析与生化细胞分馏实验相结合,揭示了 SVCT2 与细胞内去垢剂-可溶性膜分馏物在中央肌节 M 带的强共定位,在此 SVCT2 与肌浆网蛋白共溶解。值得注意的是,对培养肌纤维的电刺激会诱导 SVCT2 重新分布成囊泡状:我们的研究结果为了解 SVCT2 在细胞内不同区室中响应功能需求的动态作用提供了新的视角。
{"title":"The sodium/ascorbic acid co-transporter SVCT2 distributes in a striated membrane-enriched domain at the M-band level in slow-twitch skeletal muscle fibers.","authors":"Daniel Sandoval, Jessica Mella, Jorge Ojeda, Francisca Bermedo-García, Marcela Low, Sylvain Marcellini, Maite A Castro, Mariana Casas, Enrique Jaimovich, Juan Pablo Henríquez","doi":"10.1186/s40659-024-00554-6","DOIUrl":"10.1186/s40659-024-00554-6","url":null,"abstract":"<p><strong>Background: </strong>Vitamin C plays key roles in cellular homeostasis, functioning as a potent antioxidant and a positive regulator of cell differentiation. In skeletal muscle, the vitamin C/sodium co-transporter SVCT2 is preferentially expressed in oxidative slow fibers. SVCT2 is up-regulated during the early fusion of primary myoblasts and decreases during initial myotube growth, indicating the relevance of vitamin C uptake via SVCT2 for early skeletal muscle differentiation and fiber-type definition. However, our understanding of SVCT2 expression and function in adult skeletal muscles is still limited.</p><p><strong>Results: </strong>In this study, we demonstrate that SVCT2 exhibits an intracellular distribution in chicken slow skeletal muscles, following a highly organized striated pattern. A similar distribution was observed in human muscle samples, chicken cultured myotubes, and isolated mouse myofibers. Immunohistochemical analyses, combined with biochemical cell fractionation experiments, reveal a strong co-localization of SVCT2 with intracellular detergent-soluble membrane fractions at the central sarcomeric M-band, where it co-solubilizes with sarcoplasmic reticulum proteins. Remarkably, electrical stimulation of cultured myofibers induces the redistribution of SVCT2 into a vesicular pattern.</p><p><strong>Conclusions: </strong>Our results provide novel insights into the dynamic roles of SVCT2 in different intracellular compartments in response to functional demands.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"79"},"PeriodicalIF":4.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542426/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1186/s40659-024-00559-1
Alejandro Durán, Maximiliano Venegas, Salvador Barahona, Dionisia Sepúlveda, Marcelo Baeza, Víctor Cifuentes, Jennifer Alcaíno
The yeast Xanthophyllomyces dendrorhous synthesizes astaxanthin, a high-value carotenoid with biotechnological relevance in the nutraceutical and aquaculture industries. However, enhancing carotenoid production through strain engineering remains an ongoing challenge. Recent studies have demonstrated that carotenogenesis in X. dendrorhous is regulated by the SREBP pathway, which includes the transcription factor Sre1, particularly in the mevalonate pathway that also produces precursors used for ergosterol synthesis. In this study, we explored a novel approach to enhance carotenoid synthesis by replacing the native crtE promoter, which drives geranylgeranyl pyrophosphate synthesis (the step where carotenogenesis diverges from ergosterol biosynthesis), with the promoter of the HMGS gene, which encodes 3-hydroxy-3-methylglutaryl-CoA synthase from the mevalonate pathway. The impact of this substitution was evaluated in two mutant strains that already overproduce carotenoids due to the presence of an active Sre1 transcription factor: CBS.cyp61-, which does not produce ergosterol and strain CBS.SRE1N.FLAG, which constitutively expresses the active form of Sre1. Wild-type strain CBS6938 was used as a control. Our results showed that this modification increased the crtE transcript levels more than threefold and fourfold in CBS.cyp61-.pHMGS/crtE and CBS.SRE1N.FLAG.pHMGS/crtE, respectively, resulting in 1.43-fold and 1.22-fold increases in carotenoid production. In contrast, this modification did not produce significant changes in the wild-type strain, which lacks the active Sre1 transcription factor under the same culture conditions. This study highlights the potential of promoter substitution strategies involving genes regulated by Sre1 to enhance carotenoid production, specifically in strains where the SREBP pathway is activated, offering a promising avenue for strain improvement in industrial applications.
{"title":"Increasing carotenoid production in Xanthophyllomyces dendrorhous/Phaffia rhodozyma: SREBP pathway activation and promoter engineering.","authors":"Alejandro Durán, Maximiliano Venegas, Salvador Barahona, Dionisia Sepúlveda, Marcelo Baeza, Víctor Cifuentes, Jennifer Alcaíno","doi":"10.1186/s40659-024-00559-1","DOIUrl":"10.1186/s40659-024-00559-1","url":null,"abstract":"<p><p>The yeast Xanthophyllomyces dendrorhous synthesizes astaxanthin, a high-value carotenoid with biotechnological relevance in the nutraceutical and aquaculture industries. However, enhancing carotenoid production through strain engineering remains an ongoing challenge. Recent studies have demonstrated that carotenogenesis in X. dendrorhous is regulated by the SREBP pathway, which includes the transcription factor Sre1, particularly in the mevalonate pathway that also produces precursors used for ergosterol synthesis. In this study, we explored a novel approach to enhance carotenoid synthesis by replacing the native crtE promoter, which drives geranylgeranyl pyrophosphate synthesis (the step where carotenogenesis diverges from ergosterol biosynthesis), with the promoter of the HMGS gene, which encodes 3-hydroxy-3-methylglutaryl-CoA synthase from the mevalonate pathway. The impact of this substitution was evaluated in two mutant strains that already overproduce carotenoids due to the presence of an active Sre1 transcription factor: CBS.cyp61-, which does not produce ergosterol and strain CBS.SRE1N.FLAG, which constitutively expresses the active form of Sre1. Wild-type strain CBS6938 was used as a control. Our results showed that this modification increased the crtE transcript levels more than threefold and fourfold in CBS.cyp61<sup>-</sup>.pHMGS/crtE and CBS.SRE1N.FLAG.pHMGS/crtE, respectively, resulting in 1.43-fold and 1.22-fold increases in carotenoid production. In contrast, this modification did not produce significant changes in the wild-type strain, which lacks the active Sre1 transcription factor under the same culture conditions. This study highlights the potential of promoter substitution strategies involving genes regulated by Sre1 to enhance carotenoid production, specifically in strains where the SREBP pathway is activated, offering a promising avenue for strain improvement in industrial applications.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"78"},"PeriodicalIF":4.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536662/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: C3H10T1/2 is a mesenchymal cell line capable of differentiating into osteoblasts, adipocytes and chondrocytes. The differentiation of these cells into osteoblasts is modulated by various transcription factors, such as RUNX2. Additionally, several interconnected signaling pathways, including the NOTCH pathway, play a crucial role in modulating their differentiation into mature bone cells. We have investigated the roles of DLK1 and DLK2, two non-canonical inhibitory ligands of NOTCH receptors, in the osteogenic differentiation of C3H10T1/2 cells.
Results: Our results corroborate existing evidence that DLK1 acts as an inhibitor of osteogenesis. In contrast, we demonstrate for the first time that DLK2 enhances this differentiation process. Additionally, our data suggest that NOTCH2, 3 and 4 receptors may promote osteogenesis, as indicated by their increased expression during this process, whereas NOTCH1 expression, which decreases during cell differentiation, might inhibit osteogenesis. Moreover, treatment with DAPT, a NOTCH signaling inhibitor, impeded osteogenic differentiation. We have confirmed the increase in ERK1/2 MAPK and p38 MAPK phosphorylation in C3H10T1/2 cells induced to differentiate to osteoblasts. Our new findings reveal increased ERK1/2 MAPK phosphorylation in differentiated C3H10T1/2 cells with a decrease in DLK1 expression or an overexpression of DLK2, which is coincident with the behavior of those transfectants where we have detected an increase in osteogenic differentiation. Additionally, p38 MAPK phosphorylation increases in differentiated C3H10T1/2 cells with reduced DLK1 levels.
Conclusions: Our results suggest that DLK1 may inhibit osteogenesis, while DLK2 may promote it, by modulating NOTCH signaling and the phosphorylation of ERK1/2 and p38 MAPK pathways. Given the established inhibitory effect of DLK proteins on NOTCH signaling, these new insights could pave the way for developing future therapeutic strategies aimed at treating bone diseases.
{"title":"DLK1 and DLK2, two non-canonical ligands of NOTCH receptors, differentially modulate the osteogenic differentiation of mesenchymal C3H10T1/2 cells.","authors":"María-Milagros Rodríguez-Cano, María-Julia González-Gómez, Eva-María Monsalve, María-José M Díaz-Guerra, Moustapha Kassem, Jorge Laborda, María-Luisa Nueda, Victoriano Baladrón","doi":"10.1186/s40659-024-00561-7","DOIUrl":"10.1186/s40659-024-00561-7","url":null,"abstract":"<p><strong>Background: </strong>C3H10T1/2 is a mesenchymal cell line capable of differentiating into osteoblasts, adipocytes and chondrocytes. The differentiation of these cells into osteoblasts is modulated by various transcription factors, such as RUNX2. Additionally, several interconnected signaling pathways, including the NOTCH pathway, play a crucial role in modulating their differentiation into mature bone cells. We have investigated the roles of DLK1 and DLK2, two non-canonical inhibitory ligands of NOTCH receptors, in the osteogenic differentiation of C3H10T1/2 cells.</p><p><strong>Results: </strong>Our results corroborate existing evidence that DLK1 acts as an inhibitor of osteogenesis. In contrast, we demonstrate for the first time that DLK2 enhances this differentiation process. Additionally, our data suggest that NOTCH2, 3 and 4 receptors may promote osteogenesis, as indicated by their increased expression during this process, whereas NOTCH1 expression, which decreases during cell differentiation, might inhibit osteogenesis. Moreover, treatment with DAPT, a NOTCH signaling inhibitor, impeded osteogenic differentiation. We have confirmed the increase in ERK1/2 MAPK and p38 MAPK phosphorylation in C3H10T1/2 cells induced to differentiate to osteoblasts. Our new findings reveal increased ERK1/2 MAPK phosphorylation in differentiated C3H10T1/2 cells with a decrease in DLK1 expression or an overexpression of DLK2, which is coincident with the behavior of those transfectants where we have detected an increase in osteogenic differentiation. Additionally, p38 MAPK phosphorylation increases in differentiated C3H10T1/2 cells with reduced DLK1 levels.</p><p><strong>Conclusions: </strong>Our results suggest that DLK1 may inhibit osteogenesis, while DLK2 may promote it, by modulating NOTCH signaling and the phosphorylation of ERK1/2 and p38 MAPK pathways. Given the established inhibitory effect of DLK proteins on NOTCH signaling, these new insights could pave the way for developing future therapeutic strategies aimed at treating bone diseases.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"77"},"PeriodicalIF":4.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523663/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142543563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}