A clinical data-driven machine learning approach for predicting the effectiveness of piperacillin-tazobactam in treating lower respiratory tract infections.

IF 2.6 3区 医学 Q2 RESPIRATORY SYSTEM BMC Pulmonary Medicine Pub Date : 2025-03-17 DOI:10.1186/s12890-025-03580-6
Yemeng Yang, Kun Han, Jiatao Li, Tao Zhang, Zhijing Zhu, Ling Su, Zhaoyong Han, Chunyan Xu, Yi Lu, Likun Pan, Tao Yang
{"title":"A clinical data-driven machine learning approach for predicting the effectiveness of piperacillin-tazobactam in treating lower respiratory tract infections.","authors":"Yemeng Yang, Kun Han, Jiatao Li, Tao Zhang, Zhijing Zhu, Ling Su, Zhaoyong Han, Chunyan Xu, Yi Lu, Likun Pan, Tao Yang","doi":"10.1186/s12890-025-03580-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In hospitalized patients, inadequate antibiotic dosage leading to bacterial resistance and increased antimicrobial use intensity due to overexposure to antibiotics are common problems. In the present study, we constructed a machine learning model based on patients' clinical information to predict the clinical effectiveness of Piperacillin-tazobactam (TZP) (4:1) in treating bacterial lower respiratory tract infections (LRTIs), to assist clinicians in making better clinical decisions.</p><p><strong>Methods: </strong>We collected data from patients diagnosed with LRTIs or equivalent diagnoses admitted to the Department of Pulmonary and Critical Care Medicine at Shanghai Pudong Hospital, Shanghai, between January 1, 2021, and July 31, 2023. A total of 26 relevant clinical features were extracted from this cohort. Following data preprocessing, we trained four models: Logistic Regression, Random Forest, Support Vector Machine, and Gaussian Naive Bayes. The dataset was split into training and test sets using a 7:3 ratio. The top-performing models, as determined by Receiver Operating Characteristic (ROC)-Area Under the Curve (AUC) on the independent test set, were subsequently ensembled. Ensemble model (EL) performance was evaluated using bootstrap resampling on the training set and ROC-AUC, recall, accuracy, precision, F1-score, and log loss on an independent test set. The optimal model was then deployed as a web application for clinical outcome prediction.</p><p><strong>Results: </strong>A total of 1,314 patients primarily treated with TZP as initial empiric antibiotic therapy were enrolled in the analysis. The success group comprised 995 patients (75.7%), while the failure group consisted of 319 patients (24.3%). We constructed an ensemble learning model based on the Logistic Regression, Support Vector Machine and Random Forest models, which showed better overall performance. The EL model demonstrated robust performance on an independent test set, exhibiting a ROC-AUC of 0.69, a recall of 0.69, an accuracy of 0.64, a precision of 0.40, a F1-score of 0.50, and a log loss of 0.66. A corresponding web application was then developed and made available at http://106.12.146.54:1020/ .</p><p><strong>Conclusions: </strong>In this study, we successfully developed and validated an EL model that effectively predicts the clinical effectiveness of TZP (4:1) in treating bacterial LRTIs. The model achieved a balanced performance across key evaluation metrics, demonstrating the model's potential utility in clinical decision-making. The web-based application makes this model readily accessible to clinicians, potentially helping optimize antibiotic dosing decisions and reduce both inadequate treatment and overexposure. While promising, future studies with larger datasets and prospective validation are needed to further improve the model's performance and validate its clinical utility. This work represents a step forward in using machine learning to support antimicrobial stewardship and personalized antibiotic therapy.</p>","PeriodicalId":9148,"journal":{"name":"BMC Pulmonary Medicine","volume":"25 1","pages":"123"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pulmonary Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12890-025-03580-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In hospitalized patients, inadequate antibiotic dosage leading to bacterial resistance and increased antimicrobial use intensity due to overexposure to antibiotics are common problems. In the present study, we constructed a machine learning model based on patients' clinical information to predict the clinical effectiveness of Piperacillin-tazobactam (TZP) (4:1) in treating bacterial lower respiratory tract infections (LRTIs), to assist clinicians in making better clinical decisions.

Methods: We collected data from patients diagnosed with LRTIs or equivalent diagnoses admitted to the Department of Pulmonary and Critical Care Medicine at Shanghai Pudong Hospital, Shanghai, between January 1, 2021, and July 31, 2023. A total of 26 relevant clinical features were extracted from this cohort. Following data preprocessing, we trained four models: Logistic Regression, Random Forest, Support Vector Machine, and Gaussian Naive Bayes. The dataset was split into training and test sets using a 7:3 ratio. The top-performing models, as determined by Receiver Operating Characteristic (ROC)-Area Under the Curve (AUC) on the independent test set, were subsequently ensembled. Ensemble model (EL) performance was evaluated using bootstrap resampling on the training set and ROC-AUC, recall, accuracy, precision, F1-score, and log loss on an independent test set. The optimal model was then deployed as a web application for clinical outcome prediction.

Results: A total of 1,314 patients primarily treated with TZP as initial empiric antibiotic therapy were enrolled in the analysis. The success group comprised 995 patients (75.7%), while the failure group consisted of 319 patients (24.3%). We constructed an ensemble learning model based on the Logistic Regression, Support Vector Machine and Random Forest models, which showed better overall performance. The EL model demonstrated robust performance on an independent test set, exhibiting a ROC-AUC of 0.69, a recall of 0.69, an accuracy of 0.64, a precision of 0.40, a F1-score of 0.50, and a log loss of 0.66. A corresponding web application was then developed and made available at http://106.12.146.54:1020/ .

Conclusions: In this study, we successfully developed and validated an EL model that effectively predicts the clinical effectiveness of TZP (4:1) in treating bacterial LRTIs. The model achieved a balanced performance across key evaluation metrics, demonstrating the model's potential utility in clinical decision-making. The web-based application makes this model readily accessible to clinicians, potentially helping optimize antibiotic dosing decisions and reduce both inadequate treatment and overexposure. While promising, future studies with larger datasets and prospective validation are needed to further improve the model's performance and validate its clinical utility. This work represents a step forward in using machine learning to support antimicrobial stewardship and personalized antibiotic therapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Pulmonary Medicine
BMC Pulmonary Medicine RESPIRATORY SYSTEM-
CiteScore
4.40
自引率
3.20%
发文量
423
审稿时长
6-12 weeks
期刊介绍: BMC Pulmonary Medicine is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of pulmonary and associated disorders, as well as related molecular genetics, pathophysiology, and epidemiology.
期刊最新文献
Impact of patient admission source on respiratory intensive care unit outcomes. Prevalence of chronic obstructive pulmonary disease in high-risk populations at low, intermediate, high altitudes: a population based cross-sectional study in Yunnan Province, China. A clinical data-driven machine learning approach for predicting the effectiveness of piperacillin-tazobactam in treating lower respiratory tract infections. CT-Based radiomics nomogram of lung and mediastinal features to identify cardiovascular disease in chronic obstructive pulmonary disease: a multicenter study. Effect of asthma education intervention on self-management knowledge and control level in Tigray, Northern Ethiopia: a quasi experimental study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1