Plasma proteomics in pediatric patients with sepsis- hopes and challenges.

IF 2.8 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Clinical proteomics Pub Date : 2025-03-18 DOI:10.1186/s12014-025-09533-9
Shiyuan Fan, Saizhen Zeng
{"title":"Plasma proteomics in pediatric patients with sepsis- hopes and challenges.","authors":"Shiyuan Fan, Saizhen Zeng","doi":"10.1186/s12014-025-09533-9","DOIUrl":null,"url":null,"abstract":"<p><p>One of the main causes of morbidity and death in pediatric patients is sepsis. Of the 48.9 million cases of sepsis reported globally, 41.5% involve children under the age of five, with 2.9 million deaths associated with the disease. Clinicians must identify and treat patients at risk of sepsis or septic shock before late-stage organ dysfunction occurs since diagnosing sepsis in young patients is more difficult than in adult patients. As of right now, omics technologies that possess adequate diagnostic sensitivity and specificity can assist in locating biomarkers that indicate how the disease will progress clinically and how the patient will react to treatment. By identifying patients who are at a higher risk of dying or experiencing persistent organ dysfunction, risk stratification based on biomarkers generated from proteomics can enhance prognosis. A potentially helpful method for determining the proteins that serve as biomarkers for sepsis and formulating theories on the pathophysiological mechanisms behind complex sepsis symptoms is plasma proteomics.</p>","PeriodicalId":10468,"journal":{"name":"Clinical proteomics","volume":"22 1","pages":"10"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical proteomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12014-025-09533-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

One of the main causes of morbidity and death in pediatric patients is sepsis. Of the 48.9 million cases of sepsis reported globally, 41.5% involve children under the age of five, with 2.9 million deaths associated with the disease. Clinicians must identify and treat patients at risk of sepsis or septic shock before late-stage organ dysfunction occurs since diagnosing sepsis in young patients is more difficult than in adult patients. As of right now, omics technologies that possess adequate diagnostic sensitivity and specificity can assist in locating biomarkers that indicate how the disease will progress clinically and how the patient will react to treatment. By identifying patients who are at a higher risk of dying or experiencing persistent organ dysfunction, risk stratification based on biomarkers generated from proteomics can enhance prognosis. A potentially helpful method for determining the proteins that serve as biomarkers for sepsis and formulating theories on the pathophysiological mechanisms behind complex sepsis symptoms is plasma proteomics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Clinical proteomics
Clinical proteomics BIOCHEMICAL RESEARCH METHODS-
CiteScore
5.80
自引率
2.60%
发文量
37
审稿时长
17 weeks
期刊介绍: Clinical Proteomics encompasses all aspects of translational proteomics. Special emphasis will be placed on the application of proteomic technology to all aspects of clinical research and molecular medicine. The journal is committed to rapid scientific review and timely publication of submitted manuscripts.
期刊最新文献
Plasma proteomics in pediatric patients with sepsis- hopes and challenges. Spatial top-down proteomics for the functional characterization of human kidney. Admission glucose, HbA1c levels and inflammatory cytokines in patients with acute ST-elevation myocardial infarction. Identification of novel proteomic biomarkers for hypertension: a targeted approach for precision medicine. Integrated proteomics and N-glycoproteomic characterization of glioblastoma multiform revealed N-glycosylation heterogeneities as well as alterations in sialyation and fucosylation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1