Li Ma, Ru Chen, Weigong Ge, Paul Rogers, Beverly Lyn-Cook, Huixiao Hong, Weida Tong, Ningning Wu, Wen Zou
{"title":"AI-powered topic modeling: comparing LDA and BERTopic in analyzing opioid-related cardiovascular risks in women.","authors":"Li Ma, Ru Chen, Weigong Ge, Paul Rogers, Beverly Lyn-Cook, Huixiao Hong, Weida Tong, Ningning Wu, Wen Zou","doi":"10.3389/ebm.2025.10389","DOIUrl":null,"url":null,"abstract":"<p><p>Topic modeling is a crucial technique in natural language processing (NLP), enabling the extraction of latent themes from large text corpora. Traditional topic modeling, such as Latent Dirichlet Allocation (LDA), faces limitations in capturing the semantic relationships in the text document although it has been widely applied in text mining. BERTopic, created in 2022, leveraged advances in deep learning and can capture the contextual relationships between words. In this work, we integrated Artificial Intelligence (AI) modules to LDA and BERTopic and provided a comprehensive comparison on the analysis of prescription opioid-related cardiovascular risks in women. Opioid use can increase the risk of cardiovascular problems in women such as arrhythmia, hypotension etc. 1,837 abstracts were retrieved and downloaded from PubMed as of April 2024 using three Medical Subject Headings (MeSH) words: \"opioid,\" \"cardiovascular,\" and \"women.\" Machine Learning of Language Toolkit (MALLET) was employed for the implementation of LDA. BioBERT was used for document embedding in BERTopic. Eighteen was selected as the optimal topic number for MALLET and 23 for BERTopic. ChatGPT-4-Turbo was integrated to interpret and compare the results. The short descriptions created by ChatGPT for each topic from LDA and BERTopic were highly correlated, and the performance accuracies of LDA and BERTopic were similar as determined by expert manual reviews of the abstracts grouped by their predominant topics. The results of the t-SNE (t-distributed Stochastic Neighbor Embedding) plots showed that the clusters created from BERTopic were more compact and well-separated, representing improved coherence and distinctiveness between the topics. Our findings indicated that AI algorithms could augment both traditional and contemporary topic modeling techniques. In addition, BERTopic has the connection port for ChatGPT-4-Turbo or other large language models in its algorithm for automatic interpretation, while with LDA interpretation must be manually, and needs special procedures for data pre-processing and stop words exclusion. Therefore, while LDA remains valuable for large-scale text analysis with resource constraints, AI-assisted BERTopic offers significant advantages in providing the enhanced interpretability and the improved semantic coherence for extracting valuable insights from textual data.</p>","PeriodicalId":12163,"journal":{"name":"Experimental Biology and Medicine","volume":"250 ","pages":"10389"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906279/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/ebm.2025.10389","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Topic modeling is a crucial technique in natural language processing (NLP), enabling the extraction of latent themes from large text corpora. Traditional topic modeling, such as Latent Dirichlet Allocation (LDA), faces limitations in capturing the semantic relationships in the text document although it has been widely applied in text mining. BERTopic, created in 2022, leveraged advances in deep learning and can capture the contextual relationships between words. In this work, we integrated Artificial Intelligence (AI) modules to LDA and BERTopic and provided a comprehensive comparison on the analysis of prescription opioid-related cardiovascular risks in women. Opioid use can increase the risk of cardiovascular problems in women such as arrhythmia, hypotension etc. 1,837 abstracts were retrieved and downloaded from PubMed as of April 2024 using three Medical Subject Headings (MeSH) words: "opioid," "cardiovascular," and "women." Machine Learning of Language Toolkit (MALLET) was employed for the implementation of LDA. BioBERT was used for document embedding in BERTopic. Eighteen was selected as the optimal topic number for MALLET and 23 for BERTopic. ChatGPT-4-Turbo was integrated to interpret and compare the results. The short descriptions created by ChatGPT for each topic from LDA and BERTopic were highly correlated, and the performance accuracies of LDA and BERTopic were similar as determined by expert manual reviews of the abstracts grouped by their predominant topics. The results of the t-SNE (t-distributed Stochastic Neighbor Embedding) plots showed that the clusters created from BERTopic were more compact and well-separated, representing improved coherence and distinctiveness between the topics. Our findings indicated that AI algorithms could augment both traditional and contemporary topic modeling techniques. In addition, BERTopic has the connection port for ChatGPT-4-Turbo or other large language models in its algorithm for automatic interpretation, while with LDA interpretation must be manually, and needs special procedures for data pre-processing and stop words exclusion. Therefore, while LDA remains valuable for large-scale text analysis with resource constraints, AI-assisted BERTopic offers significant advantages in providing the enhanced interpretability and the improved semantic coherence for extracting valuable insights from textual data.
期刊介绍:
Experimental Biology and Medicine (EBM) is a global, peer-reviewed journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. EBM provides both research and review articles as well as meeting symposia and brief communications. Articles in EBM represent cutting edge research at the overlapping junctions of the biological, physical and engineering sciences that impact upon the health and welfare of the world''s population.
Topics covered in EBM include: Anatomy/Pathology; Biochemistry and Molecular Biology; Bioimaging; Biomedical Engineering; Bionanoscience; Cell and Developmental Biology; Endocrinology and Nutrition; Environmental Health/Biomarkers/Precision Medicine; Genomics, Proteomics, and Bioinformatics; Immunology/Microbiology/Virology; Mechanisms of Aging; Neuroscience; Pharmacology and Toxicology; Physiology; Stem Cell Biology; Structural Biology; Systems Biology and Microphysiological Systems; and Translational Research.