Automatic bone age assessment: a Turkish population study.

IF 1.4 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Diagnostic and interventional radiology Pub Date : 2025-03-17 DOI:10.4274/dir.2025.242999
Samet Öztürk, Murat Yüce, Gül Gizem Pamuk, Candan Varlık, Ahmet Tan Cimilli, Musa Atay
{"title":"Automatic bone age assessment: a Turkish population study.","authors":"Samet Öztürk, Murat Yüce, Gül Gizem Pamuk, Candan Varlık, Ahmet Tan Cimilli, Musa Atay","doi":"10.4274/dir.2025.242999","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Established methods for bone age assessment (BAA), such as the Greulich and Pyle atlas, suffer from variability due to population differences and observer discrepancies. Although automated BAA offers speed and consistency, limited research exists on its performance across different populations using deep learning. This study examines deep learning algorithms on the Turkish population to enhance bone age models by understanding demographic influences.</p><p><strong>Methods: </strong>We analyzed reports from Bağcılar Hospital's Health Information Management System between April 2012 and September 2023 using \"bone age\" as a keyword. Patient images were re-evaluated by an experienced radiologist and anonymized. A total of 2,730 hand radiographs from Bağcılar Hospital (Turkish population), 12,572 from the Radiological Society of North America (RSNA), and 6,185 from the Radiological Hand Pose Estimation (RHPE) public datasets were collected, along with corresponding bone ages and gender information. A random set of 546 radiographs (273 from Bağcılar, 273 from public datasets) was initially randomly split for an internal test set with bone age stratification; the remaining data were used for training and validation. BAAs were generated using a modified InceptionV3 model on 500 × 500-pixel images, selecting the model with the lowest mean absolute error (MAE) on the validation set.</p><p><strong>Results: </strong>Three models were trained and tested based on dataset origin: Bağcılar (Turkish), public (RSNA-RHPE), and a Combined model. Internal test set predictions of the Combined model estimated bone age within less than 6, 12, 18, and 24 months at rates of 44%, 73%, 87%, and 94%, respectively. The MAE was 9.2 months in the overall internal test set, 7 months on the public test set, and 11.5 months on the Bağcılar internal test data. The Bağcılar-only model had an MAE of 12.7 months on the Bağcılar internal test data. Despite less training data, there was no significant difference between the combined and Bağcılar models on the Bağcılar dataset (<i>P</i> > 0.05). The public model showed an MAE of 16.5 months on the Bağcılar dataset, significantly worse than the other models (<i>P</i> < 0.05).</p><p><strong>Conclusion: </strong>We developed an automatic BAA model including the Turkish population, one of the few such studies using deep learning. Despite challenges from population differences and data heterogeneity, these models can be effectively used in various clinical settings. Model accuracy can improve over time with cumulative data, and publicly available datasets may further refine them. Our approach enables more accurate and efficient BAAs, supporting healthcare professionals where traditional methods are time-consuming and variable.</p><p><strong>Clinical significance: </strong>The developed automated BAA model for the Turkish population offers a reliable and efficient alternative to traditional methods. By utilizing deep learning with diverse datasets from Bağcılar Hospital and publicly available sources, the model minimizes assessment time and reduces variability. This advancement enhances clinical decision-making, supports standardized BAA practices, and improves patient care in various healthcare settings.</p>","PeriodicalId":11341,"journal":{"name":"Diagnostic and interventional radiology","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic and interventional radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4274/dir.2025.242999","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Established methods for bone age assessment (BAA), such as the Greulich and Pyle atlas, suffer from variability due to population differences and observer discrepancies. Although automated BAA offers speed and consistency, limited research exists on its performance across different populations using deep learning. This study examines deep learning algorithms on the Turkish population to enhance bone age models by understanding demographic influences.

Methods: We analyzed reports from Bağcılar Hospital's Health Information Management System between April 2012 and September 2023 using "bone age" as a keyword. Patient images were re-evaluated by an experienced radiologist and anonymized. A total of 2,730 hand radiographs from Bağcılar Hospital (Turkish population), 12,572 from the Radiological Society of North America (RSNA), and 6,185 from the Radiological Hand Pose Estimation (RHPE) public datasets were collected, along with corresponding bone ages and gender information. A random set of 546 radiographs (273 from Bağcılar, 273 from public datasets) was initially randomly split for an internal test set with bone age stratification; the remaining data were used for training and validation. BAAs were generated using a modified InceptionV3 model on 500 × 500-pixel images, selecting the model with the lowest mean absolute error (MAE) on the validation set.

Results: Three models were trained and tested based on dataset origin: Bağcılar (Turkish), public (RSNA-RHPE), and a Combined model. Internal test set predictions of the Combined model estimated bone age within less than 6, 12, 18, and 24 months at rates of 44%, 73%, 87%, and 94%, respectively. The MAE was 9.2 months in the overall internal test set, 7 months on the public test set, and 11.5 months on the Bağcılar internal test data. The Bağcılar-only model had an MAE of 12.7 months on the Bağcılar internal test data. Despite less training data, there was no significant difference between the combined and Bağcılar models on the Bağcılar dataset (P > 0.05). The public model showed an MAE of 16.5 months on the Bağcılar dataset, significantly worse than the other models (P < 0.05).

Conclusion: We developed an automatic BAA model including the Turkish population, one of the few such studies using deep learning. Despite challenges from population differences and data heterogeneity, these models can be effectively used in various clinical settings. Model accuracy can improve over time with cumulative data, and publicly available datasets may further refine them. Our approach enables more accurate and efficient BAAs, supporting healthcare professionals where traditional methods are time-consuming and variable.

Clinical significance: The developed automated BAA model for the Turkish population offers a reliable and efficient alternative to traditional methods. By utilizing deep learning with diverse datasets from Bağcılar Hospital and publicly available sources, the model minimizes assessment time and reduces variability. This advancement enhances clinical decision-making, supports standardized BAA practices, and improves patient care in various healthcare settings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Diagnostic and interventional radiology
Diagnostic and interventional radiology Medicine-Radiology, Nuclear Medicine and Imaging
自引率
4.80%
发文量
0
期刊介绍: Diagnostic and Interventional Radiology (Diagn Interv Radiol) is the open access, online-only official publication of Turkish Society of Radiology. It is published bimonthly and the journal’s publication language is English. The journal is a medium for original articles, reviews, pictorial essays, technical notes related to all fields of diagnostic and interventional radiology.
期刊最新文献
Automatic bone age assessment: a Turkish population study. Efficacy of endovascular circulating false lumen occlusion in chronic aneurysmal descending aortic dissections. Transperineal microwave thermoablation for benign prostatic hyperplasia-related lower urinary tract symptoms in an elderly patient. Hepatic arterial infusion chemotherapy combined with toripalimab and surufatinib for the treatment of advanced intrahepatic cholangiocarcinoma. Single-center 10-year retrospective analysis of Amplatzer Vascular Plug 4 embolization for pulmonary arteriovenous malformations with feeding arteries of <6 mm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1