{"title":"Platycodin D Enhances Glioma Sensitivity to Temozolomide by Inhibition of the Wnt/β-Catenin Pathway.","authors":"Haima Li, Jia Ouyang, Xuelian Wang, Chao Qian","doi":"10.2147/DDDT.S503167","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Temozolomide (TMZ) is a first-line chemotherapeutic agent for gliomas. However, its efficacy is limited by drug resistance. Platycodin D (PD) exhibits notable anti-glioma activity The objective of this study was to investigate the potential of PD to augment glioma sensitivity to TMZ and the underlying mechanisms.</p><p><strong>Methods: </strong>Cell viability and proliferation were assessed using CCK-8 and clonogenic assays, respectively, while flow cytometry was used to detect apoptosis. Cell migration and invasion were assessed using Transwell assays. Western blotting and immunohistochemistry analyses were performed to determine protein expression levels. A xenograft glioma model was established to investigate the in vivo effects of PD.</p><p><strong>Results: </strong>PD augmented glioma cell sensitivity to TMZ, as evidenced by heightened inhibition of cell growth, colony formation, migration, and invasion, accompanied by elevated apoptosis. Treatment with PD or a combination of PD and TMZ robustly suppressed the expression of active β-catenin and c-Myc, which was reversed by the β-catenin activator, SKL2001. In vivo experiments demonstrated that PD amplified the anti-glioma efficacy of TMZ, resulting in diminished Ki67 expression and substantially reduced expression of active β-catenin and c-Myc in the tumor tissue.</p><p><strong>Conclusion: </strong>PD augmented glioma cell sensitivity to TMZ by modulating Wnt/β-catenin pathway. Our findings demonstrate the potential of PD as an innovative therapeutic agent to enhance glioma treatment, especially in TMZ-resistant gliomas.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"19 ","pages":"1811-1824"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910054/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S503167","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Temozolomide (TMZ) is a first-line chemotherapeutic agent for gliomas. However, its efficacy is limited by drug resistance. Platycodin D (PD) exhibits notable anti-glioma activity The objective of this study was to investigate the potential of PD to augment glioma sensitivity to TMZ and the underlying mechanisms.
Methods: Cell viability and proliferation were assessed using CCK-8 and clonogenic assays, respectively, while flow cytometry was used to detect apoptosis. Cell migration and invasion were assessed using Transwell assays. Western blotting and immunohistochemistry analyses were performed to determine protein expression levels. A xenograft glioma model was established to investigate the in vivo effects of PD.
Results: PD augmented glioma cell sensitivity to TMZ, as evidenced by heightened inhibition of cell growth, colony formation, migration, and invasion, accompanied by elevated apoptosis. Treatment with PD or a combination of PD and TMZ robustly suppressed the expression of active β-catenin and c-Myc, which was reversed by the β-catenin activator, SKL2001. In vivo experiments demonstrated that PD amplified the anti-glioma efficacy of TMZ, resulting in diminished Ki67 expression and substantially reduced expression of active β-catenin and c-Myc in the tumor tissue.
Conclusion: PD augmented glioma cell sensitivity to TMZ by modulating Wnt/β-catenin pathway. Our findings demonstrate the potential of PD as an innovative therapeutic agent to enhance glioma treatment, especially in TMZ-resistant gliomas.
期刊介绍:
Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications.
The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas.
Specific topics covered by the journal include:
Drug target identification and validation
Phenotypic screening and target deconvolution
Biochemical analyses of drug targets and their pathways
New methods or relevant applications in molecular/drug design and computer-aided drug discovery*
Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes)
Structural or molecular biological studies elucidating molecular recognition processes
Fragment-based drug discovery
Pharmaceutical/red biotechnology
Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products**
Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development
Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing)
Preclinical development studies
Translational animal models
Mechanisms of action and signalling pathways
Toxicology
Gene therapy, cell therapy and immunotherapy
Personalized medicine and pharmacogenomics
Clinical drug evaluation
Patient safety and sustained use of medicines.