{"title":"Gallic acid enhances memory, learning and reduces neuroinflammation in a rat model of scopolamine-induced cholinergic dysfunction.","authors":"Mahbobe Alikhanzade, Maryam Khosravi, Mahmoud Hosseini, Arezoo Rajabian","doi":"10.1007/s10787-025-01699-w","DOIUrl":null,"url":null,"abstract":"<p><p>Gallic acid (GA), a potent polyphenol antioxidant, has demonstrated beneficial effects on the nervous system. This study aimed to investigate the neuroprotective potential of GA on learning and memory in a rat model of scopolamine-induced cholinergic dysfunction. Additionally, the roles of oxidative stress and neuroinflammation were examined. Rats were divided into six groups: Control, scopolamine (2 mg/kg/day), scopolamine plus 25, 50, or 100 mg/kg of GA, and scopolamine plus 2 mg/kg of donepezil (DN, administered once daily). Behavioral performance was evaluated using the Morris Water Maze (MWM) and Passive Avoidance Test. Biochemical parameters were assessed to determine oxidative stress, and gene expression analyses were conducted to explore neuroinflammation in the hippocampus. The behavioral tests revealed that both GA and DN treatments improved the rats' performance in the MWM, as evidenced by their ability to locate the platform and spend more time in the target area. Additionally, GA administration increased the latency of entering the dark compartment and extended the time spent in the light compartment while reducing the frequency of dark compartment entries in the Passive Avoidance Test. Furthermore, GA exhibited antioxidant, anti-acetylcholinesterase, and anti-inflammatory effects, as indicated by the modulation of malondialdehyde levels, thiol content, superoxide dismutase activity, acetylcholinesterase activity, and the expression of inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6. In conclusion, this study provides evidence for the potential therapeutic benefits of GA in Alzheimer's disease, highlighting its ability to enhance memory function and mitigate oxidative stress, acetylcholinesterase activity, and inflammation.</p>","PeriodicalId":13551,"journal":{"name":"Inflammopharmacology","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10787-025-01699-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gallic acid (GA), a potent polyphenol antioxidant, has demonstrated beneficial effects on the nervous system. This study aimed to investigate the neuroprotective potential of GA on learning and memory in a rat model of scopolamine-induced cholinergic dysfunction. Additionally, the roles of oxidative stress and neuroinflammation were examined. Rats were divided into six groups: Control, scopolamine (2 mg/kg/day), scopolamine plus 25, 50, or 100 mg/kg of GA, and scopolamine plus 2 mg/kg of donepezil (DN, administered once daily). Behavioral performance was evaluated using the Morris Water Maze (MWM) and Passive Avoidance Test. Biochemical parameters were assessed to determine oxidative stress, and gene expression analyses were conducted to explore neuroinflammation in the hippocampus. The behavioral tests revealed that both GA and DN treatments improved the rats' performance in the MWM, as evidenced by their ability to locate the platform and spend more time in the target area. Additionally, GA administration increased the latency of entering the dark compartment and extended the time spent in the light compartment while reducing the frequency of dark compartment entries in the Passive Avoidance Test. Furthermore, GA exhibited antioxidant, anti-acetylcholinesterase, and anti-inflammatory effects, as indicated by the modulation of malondialdehyde levels, thiol content, superoxide dismutase activity, acetylcholinesterase activity, and the expression of inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6. In conclusion, this study provides evidence for the potential therapeutic benefits of GA in Alzheimer's disease, highlighting its ability to enhance memory function and mitigate oxidative stress, acetylcholinesterase activity, and inflammation.
期刊介绍:
Inflammopharmacology is the official publication of the Gastrointestinal Section of the International Union of Basic and Clinical Pharmacology (IUPHAR) and the Hungarian Experimental and Clinical Pharmacology Society (HECPS). Inflammopharmacology publishes papers on all aspects of inflammation and its pharmacological control emphasizing comparisons of (a) different inflammatory states, and (b) the actions, therapeutic efficacy and safety of drugs employed in the treatment of inflammatory conditions. The comparative aspects of the types of inflammatory conditions include gastrointestinal disease (e.g. ulcerative colitis, Crohn''s disease), parasitic diseases, toxicological manifestations of the effects of drugs and environmental agents, arthritic conditions, and inflammatory effects of injury or aging on skeletal muscle. The journal has seven main interest areas:
-Drug-Disease Interactions - Conditional Pharmacology - i.e. where the condition (disease or stress state) influences the therapeutic response and side (adverse) effects from anti-inflammatory drugs. Mechanisms of drug-disease and drug disease interactions and the role of different stress states
-Rheumatology - particular emphasis on methods of measurement of clinical response effects of new agents, adverse effects from anti-rheumatic drugs
-Gastroenterology - with particular emphasis on animal and human models, mechanisms of mucosal inflammation and ulceration and effects of novel and established anti-ulcer, anti-inflammatory agents, or antiparasitic agents
-Neuro-Inflammation and Pain - model systems, pharmacology of new analgesic agents and mechanisms of neuro-inflammation and pain
-Novel drugs, natural products and nutraceuticals - and their effects on inflammatory processes, especially where there are indications of novel modes action compared with conventional drugs e.g. NSAIDs
-Muscle-immune interactions during inflammation [...]