3D-Printed Poly (Lactic-Co-Glycolic Acid) and Graphene Oxide Nerve Guidance Conduit with Mesenchymal Stem Cells for Effective Axon Regeneration in a Rat Sciatic Nerve Defect Model.

IF 6.6 2区 医学 Q1 NANOSCIENCE & NANOTECHNOLOGY International Journal of Nanomedicine Pub Date : 2025-03-13 eCollection Date: 2025-01-01 DOI:10.2147/IJN.S501241
Meaghan E Harley-Troxell, Alisha P Pedersen, Steven D Newby, Eli Christoph, Stacy Stephenson, Thomas J Masi, Dustin L Crouch, David E Anderson, Madhu Dhar
{"title":"3D-Printed Poly (Lactic-Co-Glycolic Acid) and Graphene Oxide Nerve Guidance Conduit with Mesenchymal Stem Cells for Effective Axon Regeneration in a Rat Sciatic Nerve Defect Model.","authors":"Meaghan E Harley-Troxell, Alisha P Pedersen, Steven D Newby, Eli Christoph, Stacy Stephenson, Thomas J Masi, Dustin L Crouch, David E Anderson, Madhu Dhar","doi":"10.2147/IJN.S501241","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Peripheral nerve injuries (PNIs) impact the quality of life of millions of people. The current gold standard of treatment, the autograft, fails to restore nerve function and is often associated with untoward effects. The alternative interventions available remain unable to ensure full functional recovery. For this study we developed a 3D printed nerve guidance conduit (NGC) composed of poly (lactic-co-glycolic acid) (PLGA) and 0.25% graphene oxide (GO), that can be seeded with human adipose-derived mesenchymal stem cells (MSCs), to develop a more effective treatment for PNI.</p><p><strong>Methods: </strong>We evaluated material degradation, surface topography, and MSC attachment in vitro. For the in vivo analyses, a 10-mm long sciatic nerve defect model was created, and rats were randomly divided into 4 treatment groups: autograft, PLGA, PLGA/GO, and PLGA/GO with 1×10<sup>6</sup> MSCs. For a 6-month period: biomechanics were evaluated using a pressure mat walkway to determine functional repair; systemic toxicity was evaluated using transmission electron microscopy of kidney and lung tissue; immunohistochemistry evaluated local adverse effects, myelin sheath and axonal repair; and gross muscle analyses of the lateral gastrocnemius, medial gastrocnemius, and soleus evaluated muscle reinnervation.</p><p><strong>Results: </strong>In vitro results showed expected degradation rates, and the addition of GO exhibited cytocompatibility and favorable cell attachment. In vivo results showed biocompatibility with no translocation of the graphene nanoparticles. Histology showed evidence of axonal and myelin sheath repair. Biomechanics and gross muscle analyses had contradicting evidence of functional repair with the addition of GO. No differences were seen with the addition of MSCs.</p><p><strong>Conclusion: </strong>Our novel PLGA/GO NGC, both with and without MSCs, showed results comparable to or greater than the current gold standard, as well as ease of use surgically. With further studies to validate functional recovery, this specific combination of PLGA and GO may provide an effective biomimetic therapy to repair PNIs.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"20 ","pages":"3201-3217"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912936/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S501241","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Peripheral nerve injuries (PNIs) impact the quality of life of millions of people. The current gold standard of treatment, the autograft, fails to restore nerve function and is often associated with untoward effects. The alternative interventions available remain unable to ensure full functional recovery. For this study we developed a 3D printed nerve guidance conduit (NGC) composed of poly (lactic-co-glycolic acid) (PLGA) and 0.25% graphene oxide (GO), that can be seeded with human adipose-derived mesenchymal stem cells (MSCs), to develop a more effective treatment for PNI.

Methods: We evaluated material degradation, surface topography, and MSC attachment in vitro. For the in vivo analyses, a 10-mm long sciatic nerve defect model was created, and rats were randomly divided into 4 treatment groups: autograft, PLGA, PLGA/GO, and PLGA/GO with 1×106 MSCs. For a 6-month period: biomechanics were evaluated using a pressure mat walkway to determine functional repair; systemic toxicity was evaluated using transmission electron microscopy of kidney and lung tissue; immunohistochemistry evaluated local adverse effects, myelin sheath and axonal repair; and gross muscle analyses of the lateral gastrocnemius, medial gastrocnemius, and soleus evaluated muscle reinnervation.

Results: In vitro results showed expected degradation rates, and the addition of GO exhibited cytocompatibility and favorable cell attachment. In vivo results showed biocompatibility with no translocation of the graphene nanoparticles. Histology showed evidence of axonal and myelin sheath repair. Biomechanics and gross muscle analyses had contradicting evidence of functional repair with the addition of GO. No differences were seen with the addition of MSCs.

Conclusion: Our novel PLGA/GO NGC, both with and without MSCs, showed results comparable to or greater than the current gold standard, as well as ease of use surgically. With further studies to validate functional recovery, this specific combination of PLGA and GO may provide an effective biomimetic therapy to repair PNIs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Nanomedicine
International Journal of Nanomedicine NANOSCIENCE & NANOTECHNOLOGY-PHARMACOLOGY & PHARMACY
CiteScore
14.40
自引率
3.80%
发文量
511
审稿时长
1.4 months
期刊介绍: The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area. With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field. Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.
期刊最新文献
Red Blood Cell Membrane Vesicles for siRNA Delivery: A Biocompatible Carrier With Passive Tumor Targeting and Prolonged Plasma Residency. Enhanced Dermal Delivery of Nanoparticulate Formulation of Cutibacterium acnes Using Sponge Spicules for Atopic Dermatitis Treatment. 3D-Printed Poly (Lactic-Co-Glycolic Acid) and Graphene Oxide Nerve Guidance Conduit with Mesenchymal Stem Cells for Effective Axon Regeneration in a Rat Sciatic Nerve Defect Model. Extracellular Vesicles: A Review of Their Therapeutic Potentials, Sources, Biodistribution, and Administration Routes. Overcoming Biological Barriers in Cancer Therapy: Cell Membrane-Based Nanocarrier Strategies for Precision Delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1