The anti-inflammatory effects of vitamin B6 on neuroinflammation and neuronal damage caused by 1,2-diacetylbenzene in BV2 microglial and sH-SY5Y cells.
Hai Duc Nguyen, Won Hee Jo, Ngoc Hong Minh Hoang, Min-Sun Kim
{"title":"The anti-inflammatory effects of vitamin B6 on neuroinflammation and neuronal damage caused by 1,2-diacetylbenzene in BV2 microglial and sH-SY5Y cells.","authors":"Hai Duc Nguyen, Won Hee Jo, Ngoc Hong Minh Hoang, Min-Sun Kim","doi":"10.1080/08923973.2025.2469216","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The pathophysiology of cognitive impairment has recently focused on 1,2-Diacetylbenzene (DAB), B vitamins, tau hyperphosphorylation, and neuroinflammation. While past evidence shows that vitamin B6 influences the immune system, the molecular processes behind DAB-induced neuroinflammation and cognitive impairment remain largely unknown. This study aimed to assess the protective roles of vitamin B6 against DAB-induced toxicity in BV2 microglial and SH-SY5Y cells.</p><p><strong>Methods: </strong><i>In vitro</i> approaches included Western blot, qRT-PCR, cell viability assays, immunocytochemistry, reactive oxygen species, and nitrite assays. For <i>in silico</i> analysis, we utilized Metascape, Cytoscape, MIENTURNET, and molecular docking.</p><p><strong>Results: </strong>Vitamin B6 suppressed the TLR4/NF-κB pathway and the TREM-1/DAP12/NLRP3/caspase-1/IL1B pathway in DAB-activated BV2 cells. Additionally, it reduced reactive oxygen species and nitric oxide levels while increasing Nrf2 and IL10 production. In SH-SY5Y cells, vitamin B6 inhibited GSK-3β Tyr216, tau hyperphosphorylation, and β-amyloid production. The <i>in silico</i> analysis identified 'positive regulation of NF-κB transcription factor activity,' 'regulation of IL-6 production,' and 'positive regulation of adaptive immune response' as key molecular mechanisms linked with DAB-induced cognitive impairment and targeted by vitamin B6. Core genes, miRNAs, and transcription factors included IL1β, IL6, IL10, TNF, hsa-miR-155-5p, hsa-miR-203a-3p, hsa-miR-106a-5p, hsa-miR-26a-5p, CEBPB, and PXR.</p><p><strong>Conclusion: </strong>Our findings indicate that vitamin B6 may protect against DAB-induced cognitive impairment by attenuating key inflammatory pathways, reducing oxidative stress, and inhibiting tau hyperphosphorylation, β-amyloid production, and GSK-3β Tyr216 phosphorylation. This highlights its potential as a therapeutic agent for cognitive impairment.</p>","PeriodicalId":13420,"journal":{"name":"Immunopharmacology and Immunotoxicology","volume":" ","pages":"1-14"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunopharmacology and Immunotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08923973.2025.2469216","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The pathophysiology of cognitive impairment has recently focused on 1,2-Diacetylbenzene (DAB), B vitamins, tau hyperphosphorylation, and neuroinflammation. While past evidence shows that vitamin B6 influences the immune system, the molecular processes behind DAB-induced neuroinflammation and cognitive impairment remain largely unknown. This study aimed to assess the protective roles of vitamin B6 against DAB-induced toxicity in BV2 microglial and SH-SY5Y cells.
Methods: In vitro approaches included Western blot, qRT-PCR, cell viability assays, immunocytochemistry, reactive oxygen species, and nitrite assays. For in silico analysis, we utilized Metascape, Cytoscape, MIENTURNET, and molecular docking.
Results: Vitamin B6 suppressed the TLR4/NF-κB pathway and the TREM-1/DAP12/NLRP3/caspase-1/IL1B pathway in DAB-activated BV2 cells. Additionally, it reduced reactive oxygen species and nitric oxide levels while increasing Nrf2 and IL10 production. In SH-SY5Y cells, vitamin B6 inhibited GSK-3β Tyr216, tau hyperphosphorylation, and β-amyloid production. The in silico analysis identified 'positive regulation of NF-κB transcription factor activity,' 'regulation of IL-6 production,' and 'positive regulation of adaptive immune response' as key molecular mechanisms linked with DAB-induced cognitive impairment and targeted by vitamin B6. Core genes, miRNAs, and transcription factors included IL1β, IL6, IL10, TNF, hsa-miR-155-5p, hsa-miR-203a-3p, hsa-miR-106a-5p, hsa-miR-26a-5p, CEBPB, and PXR.
Conclusion: Our findings indicate that vitamin B6 may protect against DAB-induced cognitive impairment by attenuating key inflammatory pathways, reducing oxidative stress, and inhibiting tau hyperphosphorylation, β-amyloid production, and GSK-3β Tyr216 phosphorylation. This highlights its potential as a therapeutic agent for cognitive impairment.
期刊介绍:
The journal Immunopharmacology and Immunotoxicology is devoted to pre-clinical and clinical drug discovery and development targeting the immune system. Research related to the immunoregulatory effects of various compounds, including small-molecule drugs and biologics, on immunocompetent cells and immune responses, as well as the immunotoxicity exerted by xenobiotics and drugs. Only research that describe the mechanisms of specific compounds (not extracts) is of interest to the journal.
The journal will prioritise preclinical and clinical studies on immunotherapy of disorders such as chronic inflammation, allergy, autoimmunity, cancer etc. The effects of small-drugs, vaccines and biologics against central immunological targets as well as cell-based therapy, including dendritic cell therapy, T cell adoptive transfer and stem cell therapy, are topics of particular interest. Publications pointing towards potential new drug targets within the immune system or novel technology for immunopharmacological drug development are also welcome.
With an immunoscience focus on drug development, immunotherapy and toxicology, the journal will cover areas such as infection, allergy, inflammation, tumor immunology, degenerative disorders, immunodeficiencies, neurology, atherosclerosis and more.
Immunopharmacology and Immunotoxicology will accept original manuscripts, brief communications, commentaries, mini-reviews, reviews, clinical trials and clinical cases, on the condition that the results reported are based on original, clinical, or basic research that has not been published elsewhere in any journal in any language (except in abstract form relating to paper communicated to scientific meetings and symposiums).