Sarah E McCord, Nicholas P Webb, Justin W Van Zee, Ericha M Courtright, Ben Billings, Michael C Duniway, Brandon L Edwards, Emily Kachergis, Daniel Moriasi, Brian Morra, Aleta Nafus, Beth A Newingham, Drew A Scott, David Toledo
{"title":"Optimizing sampling across transect-based methods improves the power of agroecological monitoring data.","authors":"Sarah E McCord, Nicholas P Webb, Justin W Van Zee, Ericha M Courtright, Ben Billings, Michael C Duniway, Brandon L Edwards, Emily Kachergis, Daniel Moriasi, Brian Morra, Aleta Nafus, Beth A Newingham, Drew A Scott, David Toledo","doi":"10.1002/jeq2.20678","DOIUrl":null,"url":null,"abstract":"<p><p>Transect-based monitoring has long been a valuable tool in ecosystem monitoring to measure multiple ecosystem attributes. The line-point intercept (LPI), vegetation height, and canopy gap intercept methods comprise a set of core methods, which provide indicators of ecosystem condition. However, users often struggle to design a sampling strategy that optimizes the ability to detect ecological change using transect-based methods. We assessed the sensitivity of each of these core methods to transect length, number, and sampling interval in 1-ha plots to determine: (1) minimum sampling required to describe ecosystem characteristics and detect change; and (2) optimal transect length and number to make recommendations for future analyses and monitoring efforts. We used data from 13 National Wind Erosion Research Network locations, including five LTAR sites, spanning the western United States, which included 151 plot sampling events over time across five biomes. We found that longer and increased replicates of transects were more important for reducing sampling error than increased sample intensity along fewer transects per plot. For all methods and indicators across biomes plots, three 100-m transects reduced sampling error such that indicator estimates fell within a 95% confidence interval of ±5% for canopy gap intercept and LPI-total foliar cover, ±5 cm for height, and ±2 species for LPI-species counts. For the same criteria at 80% confidence intervals, two 100-m transects are needed. Site-scale inference was strongly affected by sample design, consequently our understanding of ecological dynamics may be influenced by sampling decisions.</p>","PeriodicalId":15732,"journal":{"name":"Journal of environmental quality","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental quality","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/jeq2.20678","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Transect-based monitoring has long been a valuable tool in ecosystem monitoring to measure multiple ecosystem attributes. The line-point intercept (LPI), vegetation height, and canopy gap intercept methods comprise a set of core methods, which provide indicators of ecosystem condition. However, users often struggle to design a sampling strategy that optimizes the ability to detect ecological change using transect-based methods. We assessed the sensitivity of each of these core methods to transect length, number, and sampling interval in 1-ha plots to determine: (1) minimum sampling required to describe ecosystem characteristics and detect change; and (2) optimal transect length and number to make recommendations for future analyses and monitoring efforts. We used data from 13 National Wind Erosion Research Network locations, including five LTAR sites, spanning the western United States, which included 151 plot sampling events over time across five biomes. We found that longer and increased replicates of transects were more important for reducing sampling error than increased sample intensity along fewer transects per plot. For all methods and indicators across biomes plots, three 100-m transects reduced sampling error such that indicator estimates fell within a 95% confidence interval of ±5% for canopy gap intercept and LPI-total foliar cover, ±5 cm for height, and ±2 species for LPI-species counts. For the same criteria at 80% confidence intervals, two 100-m transects are needed. Site-scale inference was strongly affected by sample design, consequently our understanding of ecological dynamics may be influenced by sampling decisions.
期刊介绍:
Articles in JEQ cover various aspects of anthropogenic impacts on the environment, including agricultural, terrestrial, atmospheric, and aquatic systems, with emphasis on the understanding of underlying processes. To be acceptable for consideration in JEQ, a manuscript must make a significant contribution to the advancement of knowledge or toward a better understanding of existing concepts. The study should define principles of broad applicability, be related to problems over a sizable geographic area, or be of potential interest to a representative number of scientists. Emphasis is given to the understanding of underlying processes rather than to monitoring.
Contributions are accepted from all disciplines for consideration by the editorial board. Manuscripts may be volunteered, invited, or coordinated as a special section or symposium.