{"title":"Regulation of Exosomal miR-320d/FAM49B Axis by Guanylate Binding Protein 5 Promotes Cell Growth and Tumor Progression in Oral Squamous Cell Carcinoma.","authors":"Kai-Fang Hu, Chih-Wen Shu, Chun-Feng Chen, Cheng-Hsin Lee, Hsiang-Chien Kung, Yu-Hsiang Chou, Chun-Lin Chen, Pei-Feng Liu","doi":"10.1111/jop.13624","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Guanylate binding protein 5 (GBP5) and exosomal miRNAs are involved in tumor progression. While several studies reveal the connection between GBP5 and exosomes for immune response and infection, this relationship in cancer, particularly in oral squamous cell carcinoma (OSCC), remains unexplored.</p><p><strong>Methods: </strong>The exosomal miRNA extracted from the cells was analyzed using next-generation sequencing. Bioinformatic tools were used to predict exosomal miRNA target genes. OSCC cell growth was verified by colony formation, cell viability, and cell cycle analysis. The Cancer Genome Atlas database was used to inspect the prognosis of OSCC patients.</p><p><strong>Results: </strong>Our results showed that OSCC cells treated with exosomes from GBP5-silenced OSCC cells reduced colony formation. Also, 56 differentially expressed exosomal miRNAs were found in GBP5-silenced OSCC cells compared to scrambled OSCC cells. Among them, exosomal miR-320d exhibited the highest negative correlation with GBP5 in OSCC patients. High GBP5/low miR-320d co-expression was linked to reduced disease-free survival (DFS) in patients with OSCC. Interestingly, the inhibitory effect of GBP5-silenced exosomes on OSCC cell growth was reversed by miR-320d inhibitors. Moreover, five miR-320d target genes were predicted, and only Family with Sequence Similarity 49, Member B (FAM49B) showed a negative correlation with miR-320d. A decreased level of FAM49B was found in OSCC cells treated with exosomes derived from GBP5-silenced OSCC cells, while the decreased level of FAM49B was reversed by miR-320d inhibitors. Silencing FAM49B and GBP5-silenced exosomes enhanced the cytotoxicity of paclitaxel. FAM49B was abundantly expressed in tumor tissues, and high FAM49B/low miR-320d and high GBP5/high FAM49B co-expression were linked to reduced DFS of OSCC patients.</p><p><strong>Conclusion: </strong>Our study suggests that GBP5 downregulated exosomal miR-320d may trigger FAM49B expression and facilitate OSCC tumor growth and progression.</p>","PeriodicalId":16588,"journal":{"name":"Journal of Oral Pathology & Medicine","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral Pathology & Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jop.13624","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Guanylate binding protein 5 (GBP5) and exosomal miRNAs are involved in tumor progression. While several studies reveal the connection between GBP5 and exosomes for immune response and infection, this relationship in cancer, particularly in oral squamous cell carcinoma (OSCC), remains unexplored.
Methods: The exosomal miRNA extracted from the cells was analyzed using next-generation sequencing. Bioinformatic tools were used to predict exosomal miRNA target genes. OSCC cell growth was verified by colony formation, cell viability, and cell cycle analysis. The Cancer Genome Atlas database was used to inspect the prognosis of OSCC patients.
Results: Our results showed that OSCC cells treated with exosomes from GBP5-silenced OSCC cells reduced colony formation. Also, 56 differentially expressed exosomal miRNAs were found in GBP5-silenced OSCC cells compared to scrambled OSCC cells. Among them, exosomal miR-320d exhibited the highest negative correlation with GBP5 in OSCC patients. High GBP5/low miR-320d co-expression was linked to reduced disease-free survival (DFS) in patients with OSCC. Interestingly, the inhibitory effect of GBP5-silenced exosomes on OSCC cell growth was reversed by miR-320d inhibitors. Moreover, five miR-320d target genes were predicted, and only Family with Sequence Similarity 49, Member B (FAM49B) showed a negative correlation with miR-320d. A decreased level of FAM49B was found in OSCC cells treated with exosomes derived from GBP5-silenced OSCC cells, while the decreased level of FAM49B was reversed by miR-320d inhibitors. Silencing FAM49B and GBP5-silenced exosomes enhanced the cytotoxicity of paclitaxel. FAM49B was abundantly expressed in tumor tissues, and high FAM49B/low miR-320d and high GBP5/high FAM49B co-expression were linked to reduced DFS of OSCC patients.
Conclusion: Our study suggests that GBP5 downregulated exosomal miR-320d may trigger FAM49B expression and facilitate OSCC tumor growth and progression.
期刊介绍:
The aim of the Journal of Oral Pathology & Medicine is to publish manuscripts of high scientific quality representing original clinical, diagnostic or experimental work in oral pathology and oral medicine. Papers advancing the science or practice of these disciplines will be welcomed, especially those which bring new knowledge and observations from the application of techniques within the spheres of light and electron microscopy, tissue and organ culture, immunology, histochemistry and immunocytochemistry, microbiology, genetics and biochemistry.