A dynamic and adaptive class-balanced data augmentation approach for 3D LiDAR point clouds.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES PLoS ONE Pub Date : 2025-03-17 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0318888
Bo Liu, Xiao Qi
{"title":"A dynamic and adaptive class-balanced data augmentation approach for 3D LiDAR point clouds.","authors":"Bo Liu, Xiao Qi","doi":"10.1371/journal.pone.0318888","DOIUrl":null,"url":null,"abstract":"<p><p>3D LiDAR point clouds, obtained through scanning by LiDAR devices, contain rich information such as 3D coordinates (X, Y, Z), color, classification values, intensity values, and time. However, the original collected 3D LiDAR point clouds often exhibit significant disparities in instance counts, which can hinder the effectiveness of point cloud segmentation. PolarMix, a data augmentation algorithm for 3D LiDAR point cloud datasets, addresses this issue by rotating and pasting selected class instances around the Z axis multiple times to enrich the distribution of the point cloud. However, PolarMix does not adequately consider the substantial variations in instance counts within the original point clouds, leading to an imbalance in the dataset. To address this limitation, we propose a modified version of PolarMix's instance-level rotation and pasting method that dynamically adjusts the number of rotations and pastes based on the proportion of each instance's point cloud count relative to the total. This adaptive class-balancing approach ensures a more balanced distribution of instances across the entire dataset. We term our new algorithm Dynamic Adaptive Class-Balanced PolarMix (DACB-PolarMix). Experimental results demonstrate the effectiveness of DACB-PolarMix in balancing class distribution and enhancing model performance. The results on the SemanticKitti dataset are particularly significant. Under the MinkNet model, our method improved the mIoU from 65% to 67.9%, and under the SPVCNN model, our method increased the mIoU from 66.2% to 67.5%.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 3","pages":"e0318888"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0318888","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

3D LiDAR point clouds, obtained through scanning by LiDAR devices, contain rich information such as 3D coordinates (X, Y, Z), color, classification values, intensity values, and time. However, the original collected 3D LiDAR point clouds often exhibit significant disparities in instance counts, which can hinder the effectiveness of point cloud segmentation. PolarMix, a data augmentation algorithm for 3D LiDAR point cloud datasets, addresses this issue by rotating and pasting selected class instances around the Z axis multiple times to enrich the distribution of the point cloud. However, PolarMix does not adequately consider the substantial variations in instance counts within the original point clouds, leading to an imbalance in the dataset. To address this limitation, we propose a modified version of PolarMix's instance-level rotation and pasting method that dynamically adjusts the number of rotations and pastes based on the proportion of each instance's point cloud count relative to the total. This adaptive class-balancing approach ensures a more balanced distribution of instances across the entire dataset. We term our new algorithm Dynamic Adaptive Class-Balanced PolarMix (DACB-PolarMix). Experimental results demonstrate the effectiveness of DACB-PolarMix in balancing class distribution and enhancing model performance. The results on the SemanticKitti dataset are particularly significant. Under the MinkNet model, our method improved the mIoU from 65% to 67.9%, and under the SPVCNN model, our method increased the mIoU from 66.2% to 67.5%.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
期刊最新文献
Relative telomere length in dairy calves and dams undergoing two different methods of weaning and separation after three months of contact. A dynamic and adaptive class-balanced data augmentation approach for 3D LiDAR point clouds. A malware classification method based on directed API call relationships. A protocol of a randomized control trial to test the feasibility and efficacy of the EMPOWER social-emotional learning curriculum for youth aged 11-14 years in after-school settings. Retraction: An improved beluga whale optimizer-Derived Adaptive multi-channel DeepLabv3+ for semantic segmentation of aerial images.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1