{"title":"Quantifying Patterned Features on Material Surfaces Created using Ga Ion Beam in FIB-SEM.","authors":"Supriya Ghosh, K Andre Mkhoyan","doi":"10.1093/mam/ozaf001","DOIUrl":null,"url":null,"abstract":"<p><p>We introduced and applied a set of parameters to quantify surface modifications and pattern resolutions made by a Ga ion beam in a focused ion beam instrument using two material systems, Si and SrTiO3. A combination of top-view scanning electron microscopy and cross-sectional scanning transmission electron microscopy imaging and energy-dispersive X-ray spectroscopy was used to study the structure, composition and measure dimensions of the patterned lines. The total ion dose was identified as the key parameter governing the line characteristics, which can be controlled by the degree of overlap among adjacent spots, beam dwell time at each spot, and number of beam passes for given beam size and current. At higher ion doses (>1015 ions/cm2), the Ga ions remove part of the material in the exposed area creating \"channels\" surrounded with amorphized regions, whereas at lower ion doses only amorphization occurs, creating \"ridges\" on the wafer surface. To pattern lines with similar sizes, an order of magnitude different ion doses was required for Si and SrTiO3 indicating strong material dependence. Quantification revealed that lines as fine as 10 nm can be reproducibly patterned and characterized on the surfaces of materials.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":"31 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy and Microanalysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/mam/ozaf001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We introduced and applied a set of parameters to quantify surface modifications and pattern resolutions made by a Ga ion beam in a focused ion beam instrument using two material systems, Si and SrTiO3. A combination of top-view scanning electron microscopy and cross-sectional scanning transmission electron microscopy imaging and energy-dispersive X-ray spectroscopy was used to study the structure, composition and measure dimensions of the patterned lines. The total ion dose was identified as the key parameter governing the line characteristics, which can be controlled by the degree of overlap among adjacent spots, beam dwell time at each spot, and number of beam passes for given beam size and current. At higher ion doses (>1015 ions/cm2), the Ga ions remove part of the material in the exposed area creating "channels" surrounded with amorphized regions, whereas at lower ion doses only amorphization occurs, creating "ridges" on the wafer surface. To pattern lines with similar sizes, an order of magnitude different ion doses was required for Si and SrTiO3 indicating strong material dependence. Quantification revealed that lines as fine as 10 nm can be reproducibly patterned and characterized on the surfaces of materials.
期刊介绍:
Microscopy and Microanalysis publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science. The journal provides significant articles that describe new and existing techniques and instrumentation, as well as the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes review articles, letters to the editor, and book reviews.