Glucagon-like peptide-2 pharmacotherapy activates hepatic Farnesoid X receptor-signaling to attenuate resection-associated bile acid loss in mice.

IF 7 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Molecular Metabolism Pub Date : 2025-03-15 DOI:10.1016/j.molmet.2025.102121
Johannes Reiner, Nooshin Mohebali, Jens Kurth, Maria Witte, Cornelia Prehn, Tobias Lindner, Peggy Berlin, Nagi Elleisy, Robert H Förster, Alexander Cecil, Robert Jaster, Jerzy Adamski, Sarah M Schwarzenböck, Brigitte Vollmar, Bernd J Krause, Georg Lamprecht
{"title":"Glucagon-like peptide-2 pharmacotherapy activates hepatic Farnesoid X receptor-signaling to attenuate resection-associated bile acid loss in mice.","authors":"Johannes Reiner, Nooshin Mohebali, Jens Kurth, Maria Witte, Cornelia Prehn, Tobias Lindner, Peggy Berlin, Nagi Elleisy, Robert H Förster, Alexander Cecil, Robert Jaster, Jerzy Adamski, Sarah M Schwarzenböck, Brigitte Vollmar, Bernd J Krause, Georg Lamprecht","doi":"10.1016/j.molmet.2025.102121","DOIUrl":null,"url":null,"abstract":"<p><p>The Glucagon-like peptide-2 (GLP-2) analogue teduglutide is used clinically for the treatment of short bowel syndrome and intestinal failure occurring after extensive intestinal resection. A recently discovered effect of GLP-2 treatment is the inhibition of gallbladder motility and increased gallbladder refilling. However, the impact of these two GLP-2-characteristic effects on bile acid metabolism in health and after intestinal resection is not well characterized. To study effects of teduglutide treatment, we combined the selenium-75-homocholic acid taurine (SeHCAT) assay with novel spatial imaging in healthy mice and after ileocecal resection (ICR mice) and associated the results with clinical stage targeted bile acid metabolomics as well as gene expression analyses. ICR mice had virtual complete intestinal loss of secondary bile acids, and an increased ratio of 12α-hydroxylated vs. non-12α-hydroxylated bile acids, which was attenuated by teduglutide. Teduglutide promoted SeHCAT retention in healthy and in ICR mice. Acute concentration of the SeHCAT-signal into the hepatobiliary system was observed. Teduglutide induced significant repression of hepatic cyp8b1 expression, which was associated with induction of MAF BZIP Transcription Factor G. The data suggest that GLP-2-pharmacotherapy in mice significantly slows bile acid circulation primarily via hepatic Farnesoid X receptor-signaling.</p>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":" ","pages":"102121"},"PeriodicalIF":7.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.molmet.2025.102121","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

The Glucagon-like peptide-2 (GLP-2) analogue teduglutide is used clinically for the treatment of short bowel syndrome and intestinal failure occurring after extensive intestinal resection. A recently discovered effect of GLP-2 treatment is the inhibition of gallbladder motility and increased gallbladder refilling. However, the impact of these two GLP-2-characteristic effects on bile acid metabolism in health and after intestinal resection is not well characterized. To study effects of teduglutide treatment, we combined the selenium-75-homocholic acid taurine (SeHCAT) assay with novel spatial imaging in healthy mice and after ileocecal resection (ICR mice) and associated the results with clinical stage targeted bile acid metabolomics as well as gene expression analyses. ICR mice had virtual complete intestinal loss of secondary bile acids, and an increased ratio of 12α-hydroxylated vs. non-12α-hydroxylated bile acids, which was attenuated by teduglutide. Teduglutide promoted SeHCAT retention in healthy and in ICR mice. Acute concentration of the SeHCAT-signal into the hepatobiliary system was observed. Teduglutide induced significant repression of hepatic cyp8b1 expression, which was associated with induction of MAF BZIP Transcription Factor G. The data suggest that GLP-2-pharmacotherapy in mice significantly slows bile acid circulation primarily via hepatic Farnesoid X receptor-signaling.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Metabolism
Molecular Metabolism ENDOCRINOLOGY & METABOLISM-
CiteScore
14.50
自引率
2.50%
发文量
219
审稿时长
43 days
期刊介绍: Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction. We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.
期刊最新文献
Glucagon-like peptide-2 pharmacotherapy activates hepatic Farnesoid X receptor-signaling to attenuate resection-associated bile acid loss in mice. Pre-clinical model of dysregulated FicD AMPylation causes diabetes by disrupting pancreatic endocrine homeostasis Apolipoprotein A-IV is induced by high-fat diets and mediates positive effects on glucose and lipid metabolism Glucose-dependent insulinotropic polypeptide (GIP) The small GTPase Rap1 in POMC neurons regulates leptin actions and glucose metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1