{"title":"Characterization of flexible transparent conductive films fabricated using CVD graphene on heat-resistant transparent polyimide films.","authors":"Yamato Shinada, Makoto Nakamura, Ren Kojima, Masayuki Tsutsumi, Takeshi Watanabe, Shinji Koh","doi":"10.1088/1361-6528/adc138","DOIUrl":null,"url":null,"abstract":"<p><p>Polymethylmethacrylate (PMMA) is commonly used as a support material in graphene transfer. Heat treatment exceeding 250 ℃ is required to remove the PMMA after the transfer process. However, the transparent flexible substrates conventionally used for graphene transfer generally exhibit low heat resistance. This hinders the complete removal of the PMMA, resulting in low electrical conductivity of graphene. Therefore, we focused on developing heat-resistant transparent polyimide (TPI) films as substrates for graphene transfer. The interactions between the TPI substrates and chemical vapor deposition graphene were systematically investigated. The effects of the TPI surface roughness, chemical composition, and chemical structure of the TPI, and doping effects of the substrate were examined, and a silane coupling agent (SCA) was coated to bring the TPI surface properties closer to those of a quartz glass substrate. Three-layer stacked graphene (3LG) on TPI, in which the -CF3 group in TPI is replaced with -CH3, exhibited the highest carrier mobility of 3,610 cm2/Vs at a constant carrier density after annealing. The sheet resistance of the 3LG on TPI annealed after vapor phase deposition of the SCA was lower than that of the standard TPI and decreased to 82 Ω/sq. after doping with bis(trifluoromethanesulphonyl)amide. This is comparable to the electrical properties of graphene on a quartz glass substrate. Furthermore, after doping, the 3LG/TPI maintained a high optical transmittance of 88.8% at a wavelength of 550 nm. The knowledge obtained from this study will allow graphene flexible transparent conductive films to be transferred onto TPI for use in transparent heaters and solar cells as well as to control the electrical properties for various device applications by modifying the roughness, chemical structure, and coating layers on the surface of the TPI substrate.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/adc138","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Polymethylmethacrylate (PMMA) is commonly used as a support material in graphene transfer. Heat treatment exceeding 250 ℃ is required to remove the PMMA after the transfer process. However, the transparent flexible substrates conventionally used for graphene transfer generally exhibit low heat resistance. This hinders the complete removal of the PMMA, resulting in low electrical conductivity of graphene. Therefore, we focused on developing heat-resistant transparent polyimide (TPI) films as substrates for graphene transfer. The interactions between the TPI substrates and chemical vapor deposition graphene were systematically investigated. The effects of the TPI surface roughness, chemical composition, and chemical structure of the TPI, and doping effects of the substrate were examined, and a silane coupling agent (SCA) was coated to bring the TPI surface properties closer to those of a quartz glass substrate. Three-layer stacked graphene (3LG) on TPI, in which the -CF3 group in TPI is replaced with -CH3, exhibited the highest carrier mobility of 3,610 cm2/Vs at a constant carrier density after annealing. The sheet resistance of the 3LG on TPI annealed after vapor phase deposition of the SCA was lower than that of the standard TPI and decreased to 82 Ω/sq. after doping with bis(trifluoromethanesulphonyl)amide. This is comparable to the electrical properties of graphene on a quartz glass substrate. Furthermore, after doping, the 3LG/TPI maintained a high optical transmittance of 88.8% at a wavelength of 550 nm. The knowledge obtained from this study will allow graphene flexible transparent conductive films to be transferred onto TPI for use in transparent heaters and solar cells as well as to control the electrical properties for various device applications by modifying the roughness, chemical structure, and coating layers on the surface of the TPI substrate.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.