{"title":"Filament Type Recognition for Additive Manufacturing Using a Spectroscopy Sensor and Machine Learning.","authors":"Gorkem Anil Al, Uriel Martinez-Hernandez","doi":"10.3390/s25051543","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a novel approach for filament recognition in fused filament fabrication (FFF) processes using a multi-spectral spectroscopy sensor module combined with machine learning techniques. The sensor module measures 18 wavelengths spanning the visible to near-infrared spectra, with a custom-designed shroud to ensure systematic data collection. Filament samples include polylactic acid (PLA), thermoplastic polyurethane (TPU), thermoplastic copolyester (TPC), carbon fibre, acrylonitrile butadiene styrene (ABS), and ABS blended with Carbon fibre. Data are collected using the Triad Spectroscopy module AS7265x (composed of AS72651, AS72652, AS72653 sensor units) positioned at three measurement distances (12 mm, 16 mm, 20 mm) to evaluate recognition performance under varying configurations. Machine learning models, including k-Nearest Neighbors (kNN), Logistic Regression, Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP), are employed with hyperparameter tuning applied to optimise classification accuracy. Results show that the data collected on the AS72651 sensor, paired with the SVM model, achieves the highest accuracy of 98.95% at a 20 mm measurement distance. This work introduces a compact, high-accuracy filament recognition module that can enhance the autonomy of multi-material 3D printing by dynamically identifying and switching between different filaments, optimising printing parameters for each material, and expanding the versatility of additive manufacturing applications.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902676/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051543","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a novel approach for filament recognition in fused filament fabrication (FFF) processes using a multi-spectral spectroscopy sensor module combined with machine learning techniques. The sensor module measures 18 wavelengths spanning the visible to near-infrared spectra, with a custom-designed shroud to ensure systematic data collection. Filament samples include polylactic acid (PLA), thermoplastic polyurethane (TPU), thermoplastic copolyester (TPC), carbon fibre, acrylonitrile butadiene styrene (ABS), and ABS blended with Carbon fibre. Data are collected using the Triad Spectroscopy module AS7265x (composed of AS72651, AS72652, AS72653 sensor units) positioned at three measurement distances (12 mm, 16 mm, 20 mm) to evaluate recognition performance under varying configurations. Machine learning models, including k-Nearest Neighbors (kNN), Logistic Regression, Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP), are employed with hyperparameter tuning applied to optimise classification accuracy. Results show that the data collected on the AS72651 sensor, paired with the SVM model, achieves the highest accuracy of 98.95% at a 20 mm measurement distance. This work introduces a compact, high-accuracy filament recognition module that can enhance the autonomy of multi-material 3D printing by dynamically identifying and switching between different filaments, optimising printing parameters for each material, and expanding the versatility of additive manufacturing applications.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.