Human Activity Recognition Through Augmented WiFi CSI Signals by Lightweight Attention-GRU.

IF 3.5 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2025-03-02 DOI:10.3390/s25051547
Hari Kang, Donghyun Kim, Kar-Ann Toh
{"title":"Human Activity Recognition Through Augmented WiFi CSI Signals by Lightweight Attention-GRU.","authors":"Hari Kang, Donghyun Kim, Kar-Ann Toh","doi":"10.3390/s25051547","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we investigate human activity recognition (HAR) using WiFi channel state information (CSI) signals, employing a single-layer gated recurrent unit (GRU) with an attention module. To overcome the limitations of existing state-of-the-art (SOTA) models, which, despite their good performance, have substantial model sizes, we propose a lightweight model that incorporates data augmentation and pruning techniques. Our primary goal is to maintain high performance while significantly reducing model complexity. The proposed method demonstrates promising results across four different datasets, in particular achieving an accuracy of about 98.92%, outperforming an SOTA model on the ARIL dataset while reducing the model size from 252.10 M to 0.0578 M parameters. Additionally, our method achieves a reduction in computational cost from 18.06 GFLOPs to 0.01 GFLOPs for the same dataset, making it highly suitable for practical HAR applications.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902660/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051547","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigate human activity recognition (HAR) using WiFi channel state information (CSI) signals, employing a single-layer gated recurrent unit (GRU) with an attention module. To overcome the limitations of existing state-of-the-art (SOTA) models, which, despite their good performance, have substantial model sizes, we propose a lightweight model that incorporates data augmentation and pruning techniques. Our primary goal is to maintain high performance while significantly reducing model complexity. The proposed method demonstrates promising results across four different datasets, in particular achieving an accuracy of about 98.92%, outperforming an SOTA model on the ARIL dataset while reducing the model size from 252.10 M to 0.0578 M parameters. Additionally, our method achieves a reduction in computational cost from 18.06 GFLOPs to 0.01 GFLOPs for the same dataset, making it highly suitable for practical HAR applications.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于轻量级注意力- gru增强WiFi CSI信号的人类活动识别。
在本研究中,我们利用带有注意力模块的单层门控递归单元(GRU),对使用 WiFi 信道状态信息(CSI)信号的人类活动识别(HAR)进行了研究。现有的先进(SOTA)模型虽然性能良好,但模型体积庞大,为了克服这些局限性,我们提出了一种结合了数据增强和剪枝技术的轻量级模型。我们的主要目标是在保持高性能的同时显著降低模型的复杂性。所提出的方法在四个不同的数据集上都取得了可喜的成果,特别是在 ARIL 数据集上的准确率达到了约 98.92%,超过了 SOTA 模型,同时将模型大小从 252.10 M 个参数减少到了 0.0578 M 个参数。此外,我们的方法还将同一数据集的计算成本从 18.06 GFLOPs 降至 0.01 GFLOPs,因此非常适合 HAR 的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Probability-Based Forwarding Scheme with Boundary Optimization for C-V2X Multi-Hop Communication. Real-Time Fluorescence-Based COVID-19 Diagnosis Using a Lightweight Deep Learning System. Recent Advances in Raman Spectral Classification with Machine Learning. Correction: Kaur, N.; Gupta, L. Securing the 6G-IoT Environment: A Framework for Enhancing Transparency in Artificial Intelligence Decision-Making Through Explainable Artificial Intelligence. Sensors 2025, 25, 854. Concurrent Incipient Fault Diagnosis in Three-Phase Induction Motors Using Discriminative Band Energy Analysis of AM-Demodulated Vibration Envelopes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1