Xinwei Ban, Li Qin, Jijun Yan, Jianxin Wu, Qianjin Li, Xiao Su, Yanrong Hao, Qingliang Hu, Liquan Kou, Zongyun Yan, Peiyong Xin, Yuqin Zhang, Lemeng Dong, Harro Bouwmeester, Hong Yu, Qinghui Yu, Sanwen Huang, Tao Lin, Qi Xie, Yuhang Chen, Jinfang Chu, Xia Cui, Jiayang Li, Bing Wang
{"title":"Manipulation of a strigolactone transporter in tomato confers resistance to the parasitic weed broomrape.","authors":"Xinwei Ban, Li Qin, Jijun Yan, Jianxin Wu, Qianjin Li, Xiao Su, Yanrong Hao, Qingliang Hu, Liquan Kou, Zongyun Yan, Peiyong Xin, Yuqin Zhang, Lemeng Dong, Harro Bouwmeester, Hong Yu, Qinghui Yu, Sanwen Huang, Tao Lin, Qi Xie, Yuhang Chen, Jinfang Chu, Xia Cui, Jiayang Li, Bing Wang","doi":"10.1016/j.xinn.2025.100815","DOIUrl":null,"url":null,"abstract":"<p><p>Parasitic weeds of the Orobanchaceae family cause substantial economic losses and pose significant threats to global agriculture. However, management of such parasitism is challenging, and very few resistance genes have been cloned and characterized in depth. Here, we performed a genome-wide association study using 152 tomato accessions and identified <i>SlABCG45</i> as a key gene that mediates host resistance to <i>Phelipanche aegyptiaca</i> by affecting the level of strigolactones (SLs) in root exudates. SLs are synthesized and released by host plants and act as germination stimulants for parasitic weeds. We found that SlABCG45 and its close homolog SlABCG44 were membrane-localized SL transporters with essential roles in exudation of SLs to the rhizosphere, resistance to <i>Phelipanche</i> and <i>Orobanche</i>, and upward transport of SLs from roots to shoots. As a predominant environmental stimulant exacerbates parasitism, phosphorus deficiency dramatically induced <i>SlABCG45</i> expression and weakly induced <i>SlABCG44</i> expression via the transcription factors SlNSP1 and SlNSP2. Knockout of <i>SlABCG45</i> in tomato had little effect on yield traits in a broomrape-free field, but conferred increased resistance to different <i>Phelipanche</i> and <i>Orobanche</i> species, resulting in an ∼30% yield increase in a <i>Phelipanche</i>-infested field. Our findings reveal that targeting a single gene by genome editing can confer broad-spectrum parasite resistance in tomato, providing an effective strategy for the sustainable control of parasitic plants in agriculture.</p>","PeriodicalId":36121,"journal":{"name":"The Innovation","volume":"6 3","pages":"100815"},"PeriodicalIF":33.2000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910882/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Innovation","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1016/j.xinn.2025.100815","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/3 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Parasitic weeds of the Orobanchaceae family cause substantial economic losses and pose significant threats to global agriculture. However, management of such parasitism is challenging, and very few resistance genes have been cloned and characterized in depth. Here, we performed a genome-wide association study using 152 tomato accessions and identified SlABCG45 as a key gene that mediates host resistance to Phelipanche aegyptiaca by affecting the level of strigolactones (SLs) in root exudates. SLs are synthesized and released by host plants and act as germination stimulants for parasitic weeds. We found that SlABCG45 and its close homolog SlABCG44 were membrane-localized SL transporters with essential roles in exudation of SLs to the rhizosphere, resistance to Phelipanche and Orobanche, and upward transport of SLs from roots to shoots. As a predominant environmental stimulant exacerbates parasitism, phosphorus deficiency dramatically induced SlABCG45 expression and weakly induced SlABCG44 expression via the transcription factors SlNSP1 and SlNSP2. Knockout of SlABCG45 in tomato had little effect on yield traits in a broomrape-free field, but conferred increased resistance to different Phelipanche and Orobanche species, resulting in an ∼30% yield increase in a Phelipanche-infested field. Our findings reveal that targeting a single gene by genome editing can confer broad-spectrum parasite resistance in tomato, providing an effective strategy for the sustainable control of parasitic plants in agriculture.
期刊介绍:
The Innovation is an interdisciplinary journal that aims to promote scientific application. It publishes cutting-edge research and high-quality reviews in various scientific disciplines, including physics, chemistry, materials, nanotechnology, biology, translational medicine, geoscience, and engineering. The journal adheres to the peer review and publishing standards of Cell Press journals.
The Innovation is committed to serving scientists and the public. It aims to publish significant advances promptly and provides a transparent exchange platform. The journal also strives to efficiently promote the translation from scientific discovery to technological achievements and rapidly disseminate scientific findings worldwide.
Indexed in the following databases, The Innovation has visibility in Scopus, Directory of Open Access Journals (DOAJ), Web of Science, Emerging Sources Citation Index (ESCI), PubMed Central, Compendex (previously Ei index), INSPEC, and CABI A&I.