A new class of type VI secretion system effectors can carry two toxic domains and are recognized through the WHIX motif for export.

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences PLoS Biology Pub Date : 2025-03-17 DOI:10.1371/journal.pbio.3003053
Chaya Mushka Fridman, Kinga Keppel, Vladislav Rudenko, Jon Altuna-Alvarez, David Albesa-Jové, Eran Bosis, Dor Salomon
{"title":"A new class of type VI secretion system effectors can carry two toxic domains and are recognized through the WHIX motif for export.","authors":"Chaya Mushka Fridman, Kinga Keppel, Vladislav Rudenko, Jon Altuna-Alvarez, David Albesa-Jové, Eran Bosis, Dor Salomon","doi":"10.1371/journal.pbio.3003053","DOIUrl":null,"url":null,"abstract":"<p><p>Gram-negative bacteria employ the type VI secretion system (T6SS) to deliver toxic effectors into neighboring cells and outcompete rivals. Although many effectors have been identified, their secretion mechanism often remains unknown. Here, we describe WHIX, a domain sufficient to mediate the secretion of effectors via the T6SS. Remarkably, we find WHIX in T6SS effectors that contain a single toxic domain, as well as in effectors that contain two distinct toxic domains fused to either side of WHIX. We demonstrate that the latter, which we name double-blade effectors, require two cognate immunity proteins to antagonize their toxicity. Furthermore, we show that WHIX can be used as a chassis for T6SS-mediated secretion of multiple domains. Our findings reveal a new class of polymorphic T6SS cargo effectors with a unique secretion domain that can deploy two toxic domains in one shot, possibly reducing recipients' ability to defend themselves.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 3","pages":"e3003053"},"PeriodicalIF":9.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3003053","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Gram-negative bacteria employ the type VI secretion system (T6SS) to deliver toxic effectors into neighboring cells and outcompete rivals. Although many effectors have been identified, their secretion mechanism often remains unknown. Here, we describe WHIX, a domain sufficient to mediate the secretion of effectors via the T6SS. Remarkably, we find WHIX in T6SS effectors that contain a single toxic domain, as well as in effectors that contain two distinct toxic domains fused to either side of WHIX. We demonstrate that the latter, which we name double-blade effectors, require two cognate immunity proteins to antagonize their toxicity. Furthermore, we show that WHIX can be used as a chassis for T6SS-mediated secretion of multiple domains. Our findings reveal a new class of polymorphic T6SS cargo effectors with a unique secretion domain that can deploy two toxic domains in one shot, possibly reducing recipients' ability to defend themselves.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
期刊最新文献
The IBEX Knowledge-Base: A central resource for multiplexed imaging techniques. Microbiota isolate collections: A key to global vector-borne disease control. Past conservation efforts reveal which actions lead to positive outcomes for species. The end of the genetic paradigm of cancer. A new class of type VI secretion system effectors can carry two toxic domains and are recognized through the WHIX motif for export.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1