Age matters: exploring differential effects of antimicrobial treatment on gut microbiota of adult and juvenile brown trout (Salmo trutta).

IF 4.9 Q1 MICROBIOLOGY Animal microbiome Pub Date : 2025-03-16 DOI:10.1186/s42523-025-00391-2
Lisa-Marie Streb, Paulina Cholewińska, Silvia Gschwendtner, Juergen Geist, Susanne Rath, Michael Schloter
{"title":"Age matters: exploring differential effects of antimicrobial treatment on gut microbiota of adult and juvenile brown trout (Salmo trutta).","authors":"Lisa-Marie Streb, Paulina Cholewińska, Silvia Gschwendtner, Juergen Geist, Susanne Rath, Michael Schloter","doi":"10.1186/s42523-025-00391-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Antibiotics and antiparasitics are essential tools in controlling infectious disease outbreaks in commercial aquaculture. While the negative effects of antimicrobials on the gut microbiome of various farmed fish species are well documented, the influence of underlying host factors, such as age, on microbiome responses remains poorly understood. This is especially evident for peracetic acid, whose impact on the gut microbiome has not yet been studied. Understanding how microbiome dynamics vary by host age is critical to improving antibiotic stewardship in aquaculture. In this study, juvenile and sexually mature brown trout (Salmo trutta) were used as a model to investigate the age-dependent effects of florfenicol and peracetic acid on the gut microbiome using a 16S rRNA metabarcoding approach.</p><p><strong>Results: </strong>Fish age significantly shaped taxonomic composition and microbial co-occurrence network structure of the gut microbiome, regardless of treatment. Juvenile trout exhibited greater microbiome volatility and a stronger response to both florfenicol and peracetic acid compared to adult fish, with disruptions persisting up to 11 days post-treatment. Temporal dynamics were also evident, with microbial shifts characterized by a decline in beneficial commensals like Cetobacterium and Lactococcus. Although overall abundance recovered by 18 days post-treatment, network positions of key microbial community members remained altered, particularly in juvenile fish. Opportunistic pathogens, including Aeromonas and Streptococcus, were enriched and assumed more central roles within the microbial networks in treated fish.</p><p><strong>Conclusion: </strong>The initial composition of the gut microbiome in brown trout is strongly influenced by fish age, which in turn affects the microbiome's response to antibiotic disruption. Juveniles displayed higher susceptibility to microbiome perturbation, and although recovery was observed at the community level, network properties remained altered. This study also provides the first evidence that external peracetic acid application can disrupt gut microbial communities. Since compositional shifts are often linked to functional alterations, even short-term disruptions may have important consequences for host health in developing fish. These findings emphasize the importance of considering gut microbial community structure in relation to fish age in aquaculture management practices.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"28"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal microbiome","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42523-025-00391-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Antibiotics and antiparasitics are essential tools in controlling infectious disease outbreaks in commercial aquaculture. While the negative effects of antimicrobials on the gut microbiome of various farmed fish species are well documented, the influence of underlying host factors, such as age, on microbiome responses remains poorly understood. This is especially evident for peracetic acid, whose impact on the gut microbiome has not yet been studied. Understanding how microbiome dynamics vary by host age is critical to improving antibiotic stewardship in aquaculture. In this study, juvenile and sexually mature brown trout (Salmo trutta) were used as a model to investigate the age-dependent effects of florfenicol and peracetic acid on the gut microbiome using a 16S rRNA metabarcoding approach.

Results: Fish age significantly shaped taxonomic composition and microbial co-occurrence network structure of the gut microbiome, regardless of treatment. Juvenile trout exhibited greater microbiome volatility and a stronger response to both florfenicol and peracetic acid compared to adult fish, with disruptions persisting up to 11 days post-treatment. Temporal dynamics were also evident, with microbial shifts characterized by a decline in beneficial commensals like Cetobacterium and Lactococcus. Although overall abundance recovered by 18 days post-treatment, network positions of key microbial community members remained altered, particularly in juvenile fish. Opportunistic pathogens, including Aeromonas and Streptococcus, were enriched and assumed more central roles within the microbial networks in treated fish.

Conclusion: The initial composition of the gut microbiome in brown trout is strongly influenced by fish age, which in turn affects the microbiome's response to antibiotic disruption. Juveniles displayed higher susceptibility to microbiome perturbation, and although recovery was observed at the community level, network properties remained altered. This study also provides the first evidence that external peracetic acid application can disrupt gut microbial communities. Since compositional shifts are often linked to functional alterations, even short-term disruptions may have important consequences for host health in developing fish. These findings emphasize the importance of considering gut microbial community structure in relation to fish age in aquaculture management practices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Age matters: exploring differential effects of antimicrobial treatment on gut microbiota of adult and juvenile brown trout (Salmo trutta). Nasal pathobiont abundance is a moderate feedlot-dependent indicator of bovine respiratory disease in beef cattle. Diurnal oscillations of amino acids dynamically associate with microbiota and resistome in the colon of pigs. Effect of Lactiplantibacillus plantarum N-1 and isomaltose-oligosaccharide on promoting growth performance and modulating the gastrointestinal microbiota in newborn Hu sheep. Network analyses unraveled the complex interactions in the rumen microbiota associated with methane emission in dairy cattle.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1