{"title":"Age matters: exploring differential effects of antimicrobial treatment on gut microbiota of adult and juvenile brown trout (Salmo trutta).","authors":"Lisa-Marie Streb, Paulina Cholewińska, Silvia Gschwendtner, Juergen Geist, Susanne Rath, Michael Schloter","doi":"10.1186/s42523-025-00391-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Antibiotics and antiparasitics are essential tools in controlling infectious disease outbreaks in commercial aquaculture. While the negative effects of antimicrobials on the gut microbiome of various farmed fish species are well documented, the influence of underlying host factors, such as age, on microbiome responses remains poorly understood. This is especially evident for peracetic acid, whose impact on the gut microbiome has not yet been studied. Understanding how microbiome dynamics vary by host age is critical to improving antibiotic stewardship in aquaculture. In this study, juvenile and sexually mature brown trout (Salmo trutta) were used as a model to investigate the age-dependent effects of florfenicol and peracetic acid on the gut microbiome using a 16S rRNA metabarcoding approach.</p><p><strong>Results: </strong>Fish age significantly shaped taxonomic composition and microbial co-occurrence network structure of the gut microbiome, regardless of treatment. Juvenile trout exhibited greater microbiome volatility and a stronger response to both florfenicol and peracetic acid compared to adult fish, with disruptions persisting up to 11 days post-treatment. Temporal dynamics were also evident, with microbial shifts characterized by a decline in beneficial commensals like Cetobacterium and Lactococcus. Although overall abundance recovered by 18 days post-treatment, network positions of key microbial community members remained altered, particularly in juvenile fish. Opportunistic pathogens, including Aeromonas and Streptococcus, were enriched and assumed more central roles within the microbial networks in treated fish.</p><p><strong>Conclusion: </strong>The initial composition of the gut microbiome in brown trout is strongly influenced by fish age, which in turn affects the microbiome's response to antibiotic disruption. Juveniles displayed higher susceptibility to microbiome perturbation, and although recovery was observed at the community level, network properties remained altered. This study also provides the first evidence that external peracetic acid application can disrupt gut microbial communities. Since compositional shifts are often linked to functional alterations, even short-term disruptions may have important consequences for host health in developing fish. These findings emphasize the importance of considering gut microbial community structure in relation to fish age in aquaculture management practices.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"28"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal microbiome","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42523-025-00391-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Antibiotics and antiparasitics are essential tools in controlling infectious disease outbreaks in commercial aquaculture. While the negative effects of antimicrobials on the gut microbiome of various farmed fish species are well documented, the influence of underlying host factors, such as age, on microbiome responses remains poorly understood. This is especially evident for peracetic acid, whose impact on the gut microbiome has not yet been studied. Understanding how microbiome dynamics vary by host age is critical to improving antibiotic stewardship in aquaculture. In this study, juvenile and sexually mature brown trout (Salmo trutta) were used as a model to investigate the age-dependent effects of florfenicol and peracetic acid on the gut microbiome using a 16S rRNA metabarcoding approach.
Results: Fish age significantly shaped taxonomic composition and microbial co-occurrence network structure of the gut microbiome, regardless of treatment. Juvenile trout exhibited greater microbiome volatility and a stronger response to both florfenicol and peracetic acid compared to adult fish, with disruptions persisting up to 11 days post-treatment. Temporal dynamics were also evident, with microbial shifts characterized by a decline in beneficial commensals like Cetobacterium and Lactococcus. Although overall abundance recovered by 18 days post-treatment, network positions of key microbial community members remained altered, particularly in juvenile fish. Opportunistic pathogens, including Aeromonas and Streptococcus, were enriched and assumed more central roles within the microbial networks in treated fish.
Conclusion: The initial composition of the gut microbiome in brown trout is strongly influenced by fish age, which in turn affects the microbiome's response to antibiotic disruption. Juveniles displayed higher susceptibility to microbiome perturbation, and although recovery was observed at the community level, network properties remained altered. This study also provides the first evidence that external peracetic acid application can disrupt gut microbial communities. Since compositional shifts are often linked to functional alterations, even short-term disruptions may have important consequences for host health in developing fish. These findings emphasize the importance of considering gut microbial community structure in relation to fish age in aquaculture management practices.