In-Hospital Mortality Prediction among Intensive Care Unit Patients with Acute Ischemic Stroke: A Machine Learning Approach.

Health data science Pub Date : 2025-03-17 eCollection Date: 2025-01-01 DOI:10.34133/hds.0179
Jack A Cummins, Ben S Gerber, Mayuko Ito Fukunaga, Nils Henninger, Catarina I Kiefe, Feifan Liu
{"title":"In-Hospital Mortality Prediction among Intensive Care Unit Patients with Acute Ischemic Stroke: A Machine Learning Approach.","authors":"Jack A Cummins, Ben S Gerber, Mayuko Ito Fukunaga, Nils Henninger, Catarina I Kiefe, Feifan Liu","doi":"10.34133/hds.0179","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Acute ischemic stroke is a leading cause of death in the United States. Identifying patients with stroke at high risk of mortality is crucial for timely intervention and optimal resource allocation. This study aims to develop and validate machine learning-based models to predict in-hospital mortality risk for intensive care unit (ICU) patients with acute ischemic stroke and identify important associated factors. <b>Methods:</b> Our data include 3,489 acute ischemic stroke admissions to the ICU for patients not discharged or dead within 48 h from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) database. Demographic, hospitalization type, procedure, medication, intake (intravenous and oral), laboratory, vital signs, and clinical assessment [e.g., Glasgow Coma Scale Scores (GCS)] during the initial 48 h of admissions were used to predict in-hospital mortality after 48 h of ICU admission. We explored 3 machine learning models (random forests, logistic regression, and XGBoost) and applied Bayesian optimization for hyperparameter tuning. Important features were identified using learned coefficients. <b>Results:</b> Experiments show that XGBoost tuned for area under the receiver operating characteristic curve (AUC ROC) was the best performing model (AUC ROC 0.86, F1 0.52), compared to random forests (AUC ROC 0.85, F1 0.47) and logistic regression (AUC ROC 0.75, F1 0.40). Top features include GCS, blood urea nitrogen, and Richmond RASS score. The model also demonstrates good fairness for males versus females and across racial/ethnic groups. <b>Conclusions:</b> Machine learning has shown great potential in predicting in-hospital mortality risk for people with acute ischemic stroke in the ICU setting. However, more ethical considerations need to be applied to ensure that performance differences across different racial/ethnic groups will not exacerbate existing health disparities and will not harm historically marginalized populations.</p>","PeriodicalId":73207,"journal":{"name":"Health data science","volume":"5 ","pages":"0179"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912875/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/hds.0179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Acute ischemic stroke is a leading cause of death in the United States. Identifying patients with stroke at high risk of mortality is crucial for timely intervention and optimal resource allocation. This study aims to develop and validate machine learning-based models to predict in-hospital mortality risk for intensive care unit (ICU) patients with acute ischemic stroke and identify important associated factors. Methods: Our data include 3,489 acute ischemic stroke admissions to the ICU for patients not discharged or dead within 48 h from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) database. Demographic, hospitalization type, procedure, medication, intake (intravenous and oral), laboratory, vital signs, and clinical assessment [e.g., Glasgow Coma Scale Scores (GCS)] during the initial 48 h of admissions were used to predict in-hospital mortality after 48 h of ICU admission. We explored 3 machine learning models (random forests, logistic regression, and XGBoost) and applied Bayesian optimization for hyperparameter tuning. Important features were identified using learned coefficients. Results: Experiments show that XGBoost tuned for area under the receiver operating characteristic curve (AUC ROC) was the best performing model (AUC ROC 0.86, F1 0.52), compared to random forests (AUC ROC 0.85, F1 0.47) and logistic regression (AUC ROC 0.75, F1 0.40). Top features include GCS, blood urea nitrogen, and Richmond RASS score. The model also demonstrates good fairness for males versus females and across racial/ethnic groups. Conclusions: Machine learning has shown great potential in predicting in-hospital mortality risk for people with acute ischemic stroke in the ICU setting. However, more ethical considerations need to be applied to ensure that performance differences across different racial/ethnic groups will not exacerbate existing health disparities and will not harm historically marginalized populations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊最新文献
In-Hospital Mortality Prediction among Intensive Care Unit Patients with Acute Ischemic Stroke: A Machine Learning Approach. Prevalence and Risk Factors of Type 2 Diabetes Mellitus among Depression Inpatients from 2005 to 2018 in Beijing, China. Caring for the "Osteo-Cardiovascular Faller": Associations between Multimorbidity and Fall Transitions among Middle-Aged and Older Chinese. ECG-LM: Understanding Electrocardiogram with a Large Language Model. Multi-Modal CLIP-Informed Protein Editing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1