{"title":"Loss of <i>epe1 <sup>+</sup></i> extends chronological lifespan in <i>Schizosaccharomyces pombe</i>.","authors":"Sohini Basu, Yongqi Xu, Tommy Vo","doi":"10.17912/micropub.biology.001507","DOIUrl":null,"url":null,"abstract":"<p><p>Aging is a complex phenomenon that is characterized by the altered regulation of various biological processes over time. One of these, epigenetics, play a crucial role throughout the different stages of eukaryotic life and its alteration is considered a key molecular hallmark of aging. However, the epigenetic factors which are important for lifespan control remain elusive. Here, we used <i>S. pombe</i> as a model organism to study the epigenetic basis of aging. Our study reveals that loss of the <i>epe1</i> + gene, encoding for the JmjC domain protein Epe1 , extends chronological lifespan and increases H3K9me3 in aged <i>S. pombe</i> cells <i>.</i></p>","PeriodicalId":74192,"journal":{"name":"microPublication biology","volume":"2025 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11907270/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"microPublication biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17912/micropub.biology.001507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aging is a complex phenomenon that is characterized by the altered regulation of various biological processes over time. One of these, epigenetics, play a crucial role throughout the different stages of eukaryotic life and its alteration is considered a key molecular hallmark of aging. However, the epigenetic factors which are important for lifespan control remain elusive. Here, we used S. pombe as a model organism to study the epigenetic basis of aging. Our study reveals that loss of the epe1 + gene, encoding for the JmjC domain protein Epe1 , extends chronological lifespan and increases H3K9me3 in aged S. pombe cells .