Enhancing therapeutic efficacy through degradation of endogenous extracellular matrix in primary breast tumor spheroids.

Alessandra Lo Cicero, Simona Campora, Gabriele Lo Buglio, Paolo Cinà, Margot Lo Pinto, Simone Dario Scilabra, Giulio Ghersi
{"title":"Enhancing therapeutic efficacy through degradation of endogenous extracellular matrix in primary breast tumor spheroids.","authors":"Alessandra Lo Cicero, Simona Campora, Gabriele Lo Buglio, Paolo Cinà, Margot Lo Pinto, Simone Dario Scilabra, Giulio Ghersi","doi":"10.1111/febs.70069","DOIUrl":null,"url":null,"abstract":"<p><p>Solid tumors have a complex extracellular matrix (ECM) that significantly affects tumor behavior and response to therapy. Understanding the ECM's role is crucial for advancing cancer research and treatment. This study established an in vitro model using primary cells isolated from a rat breast tumor to generate three-dimensional spheroids. Monolayer cells and spheroid cultures exhibited different protein expression patterns, with primary tumor spheroids presenting an increased level of ECM-related proteins and a more complex extracellular environment. Furthermore, spheroids produce endogenous collagen type I matrix, which is the main component of the tumoral ECM. This matrix is arranged predominantly around the 3D structure, mimicking the conditions of solid tumors. Treatments with recombinant collagenases class II (acting on the linear collagen region) and class I (acting on the 3D-helix region) completely degrade collagen within the spheroid structure. Collagenase pretreatment enhances the accessibility of the anticancer drug doxorubicin to penetrate the core of spheroids and sensitize them to doxorubicin-induced cytotoxicity. Our findings highlight the importance of overcoming drug resistance in breast cancer by targeting the ECM and proposing a novel strategy for improving therapeutic outcomes in solid tumors. By employing a three-dimensional spheroid model, with an endogenous ECM, we can offer more relevant insights into tumor biology and treatment responses.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Solid tumors have a complex extracellular matrix (ECM) that significantly affects tumor behavior and response to therapy. Understanding the ECM's role is crucial for advancing cancer research and treatment. This study established an in vitro model using primary cells isolated from a rat breast tumor to generate three-dimensional spheroids. Monolayer cells and spheroid cultures exhibited different protein expression patterns, with primary tumor spheroids presenting an increased level of ECM-related proteins and a more complex extracellular environment. Furthermore, spheroids produce endogenous collagen type I matrix, which is the main component of the tumoral ECM. This matrix is arranged predominantly around the 3D structure, mimicking the conditions of solid tumors. Treatments with recombinant collagenases class II (acting on the linear collagen region) and class I (acting on the 3D-helix region) completely degrade collagen within the spheroid structure. Collagenase pretreatment enhances the accessibility of the anticancer drug doxorubicin to penetrate the core of spheroids and sensitize them to doxorubicin-induced cytotoxicity. Our findings highlight the importance of overcoming drug resistance in breast cancer by targeting the ECM and proposing a novel strategy for improving therapeutic outcomes in solid tumors. By employing a three-dimensional spheroid model, with an endogenous ECM, we can offer more relevant insights into tumor biology and treatment responses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Correction. Enhancing therapeutic efficacy through degradation of endogenous extracellular matrix in primary breast tumor spheroids. Potency of agarose gel-supported lipid bilayers for electrophysiologic analysis of channel pores formed by Bacillus thuringiensis insecticidal proteins. Tudor staphylococcal nuclease (Tudor-SN) regulates activation of quiescent hepatic stellate cells. Pharmacological manipulation of liver fibrosis progression using novel HDAC6 inhibitors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1