Pratima Nangia-Makker, Madison Ahrens, Neeraja Purandare, Siddhesh Aras, Jing Li, Katherine Gurdziel, Hyejeong Jang, Seongho Kim, Malathy P Shekhar
{"title":"Relationship between melanoma vemurafenib tolerance thresholds and metabolic pathway choice and Wnt signaling involvement.","authors":"Pratima Nangia-Makker, Madison Ahrens, Neeraja Purandare, Siddhesh Aras, Jing Li, Katherine Gurdziel, Hyejeong Jang, Seongho Kim, Malathy P Shekhar","doi":"10.1101/2025.03.06.641924","DOIUrl":null,"url":null,"abstract":"<p><p>Vemurafenib constitutes an important therapeutic for BRAFV600 mutant melanomas, but despite high initial response rates, resistance to BRAF and MEK inhibitors quickly develops. Here, we performed an integrative analysis of metabolomic consequences and transcriptome alterations to uncover mechanisms involved in adaptive vemurafenib resistance (VemR) development and their relationship with vemurafenib tolerance thresholds. We developed BRAFV600E isogenic models of VemR utilizing M14 and A2058 lines, and patient-derived melanomas with V600E or normal BRAF to verify vemurafenib selectivity. MEK or PI3K inhibitors only partially inhibited VemR cell proliferation, indicating cross-resistance to these inhibitors. MITF and β-catenin levels were induced and treatment with Wnt/β-catenin inhibitor ICG-001 restored vemurafenib sensitivity with concomitant reductions in β-catenin-regulated gene expressions, phospho-ERK1/2, and VemR-induced mitochondrial mass and respiration. Targeted metabolite, MitoPlate-S1, Mito-stress and transcriptome/metabolomic analysis showed that melanoma cells with elevated vemurafenib tolerance thresholds such as A2058 VemR cells utilize Wnt/β-catenin signaling for mitochondrial metabolism while VemR cells with low tolerance such as M14 VemR cells rely on Wnt/β-catenin signaling for pentose phosphate pathway. Pathways associated with cytokine-cytokine receptor, ECM receptor, and neuroactive ligand receptor interactions were similarly enriched in BRAFV600E patient-derived melanoma as M14 and A2058 cells whereas distinct pathways involving cell cycle, DNA replication, Fanconi anemia and DNA repair pathways are upregulated in wild type BRAF expressing patient derived melanoma. These data show for the first time that the metabolic pathway choices made by VemR BRAF mutant melanomas are controlled by vemurafenib tolerance and endurance thresholds and Wnt/β-catenin signaling plays a central role in coordinating expression of genes controlling VemR and metabolic pathway shifts.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11908245/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.03.06.641924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Vemurafenib constitutes an important therapeutic for BRAFV600 mutant melanomas, but despite high initial response rates, resistance to BRAF and MEK inhibitors quickly develops. Here, we performed an integrative analysis of metabolomic consequences and transcriptome alterations to uncover mechanisms involved in adaptive vemurafenib resistance (VemR) development and their relationship with vemurafenib tolerance thresholds. We developed BRAFV600E isogenic models of VemR utilizing M14 and A2058 lines, and patient-derived melanomas with V600E or normal BRAF to verify vemurafenib selectivity. MEK or PI3K inhibitors only partially inhibited VemR cell proliferation, indicating cross-resistance to these inhibitors. MITF and β-catenin levels were induced and treatment with Wnt/β-catenin inhibitor ICG-001 restored vemurafenib sensitivity with concomitant reductions in β-catenin-regulated gene expressions, phospho-ERK1/2, and VemR-induced mitochondrial mass and respiration. Targeted metabolite, MitoPlate-S1, Mito-stress and transcriptome/metabolomic analysis showed that melanoma cells with elevated vemurafenib tolerance thresholds such as A2058 VemR cells utilize Wnt/β-catenin signaling for mitochondrial metabolism while VemR cells with low tolerance such as M14 VemR cells rely on Wnt/β-catenin signaling for pentose phosphate pathway. Pathways associated with cytokine-cytokine receptor, ECM receptor, and neuroactive ligand receptor interactions were similarly enriched in BRAFV600E patient-derived melanoma as M14 and A2058 cells whereas distinct pathways involving cell cycle, DNA replication, Fanconi anemia and DNA repair pathways are upregulated in wild type BRAF expressing patient derived melanoma. These data show for the first time that the metabolic pathway choices made by VemR BRAF mutant melanomas are controlled by vemurafenib tolerance and endurance thresholds and Wnt/β-catenin signaling plays a central role in coordinating expression of genes controlling VemR and metabolic pathway shifts.