Sensitivity based model agnostic scalable explanations of deep learning.

Manu Aggarwal, N G Cogan, Vipul Periwal
{"title":"Sensitivity based model agnostic scalable explanations of deep learning.","authors":"Manu Aggarwal, N G Cogan, Vipul Periwal","doi":"10.1101/2025.02.21.639516","DOIUrl":null,"url":null,"abstract":"<p><p>Deep neural networks (DNNs) are powerful tools for data-driven predictive machine learning, but their complex architecture obscures mechanistic relations that they have learned from data. This information is critical to the scientific method of hypotheses development, experiment design, and model validation, especially when DNNs are used for biological and clinical predictions that affect human health. We design SensX, a model agnostic explainable AI (XAI) framework that outperformed current state-of-the-art XAI in accuracy (up to 52% higher) and computation time (up to 158 times faster), with higher consistency in all cases. It also determines an optimal subset of important input features, reducing dimensionality of further analyses. SensX scaled to explain vision transformer (ViT) models with more than 150, 000 features, which is computationally infeasible for current state-of-the-art XAI. SensX validated that ViT models learned justifiable features as important for different facial attributes of different human faces. SensX revealed biases inherent to the ViT architecture, an observation possible only when importance of each feature is explained. We trained DNNs to annotate biological cell types using single-cell RNA-seq data and SensX determined the sets of genes that the DNNs learned to be important to different cell types.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11908179/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.02.21.639516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep neural networks (DNNs) are powerful tools for data-driven predictive machine learning, but their complex architecture obscures mechanistic relations that they have learned from data. This information is critical to the scientific method of hypotheses development, experiment design, and model validation, especially when DNNs are used for biological and clinical predictions that affect human health. We design SensX, a model agnostic explainable AI (XAI) framework that outperformed current state-of-the-art XAI in accuracy (up to 52% higher) and computation time (up to 158 times faster), with higher consistency in all cases. It also determines an optimal subset of important input features, reducing dimensionality of further analyses. SensX scaled to explain vision transformer (ViT) models with more than 150, 000 features, which is computationally infeasible for current state-of-the-art XAI. SensX validated that ViT models learned justifiable features as important for different facial attributes of different human faces. SensX revealed biases inherent to the ViT architecture, an observation possible only when importance of each feature is explained. We trained DNNs to annotate biological cell types using single-cell RNA-seq data and SensX determined the sets of genes that the DNNs learned to be important to different cell types.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sequencing by Expansion (SBX) - a novel, high-throughput single-molecule sequencing technology. C12ORF57: a novel principal regulator of synaptic AMPA currents and excitatory neuronal homeostasis. Engineering Multiplexed Synthetic Breath Biomarkers as Diagnostic Probes. Alevin-fry-atac enables rapid and memory frugal mapping of single-cell ATAC-seq data using virtual colors for accurate genomic pseudoalignment. Cholesterol-Dependent Dimerization and Conformational Dynamics of EphA2 Receptors: Insights from Coarse-Grained and All-Atom Simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1