Salmonella effector SseL induces PD-L1 up-regulation and T cell inactivation via β-catenin signalling axis

Umesh Chopra, Maria Kondooparambil Sabu, Raju S Rajmani, Ayushi Devendrasingh Chaudhary, Shashi Kumar Gupta, Dipshikha Chakravortty
{"title":"Salmonella effector SseL induces PD-L1 up-regulation and T cell inactivation via β-catenin signalling axis","authors":"Umesh Chopra, Maria Kondooparambil Sabu, Raju S Rajmani, Ayushi Devendrasingh Chaudhary, Shashi Kumar Gupta, Dipshikha Chakravortty","doi":"10.1093/infdis/jiaf131","DOIUrl":null,"url":null,"abstract":"The upregulation of PD-L1 by various pathogens is a recognized strategy to evade the adaptive immune response. Salmonella infection also upregulates PD-L1 levels; however, the underlying mechanism remains unclear. Our study reveals that this upregulation is mediated by Salmonella pathogenicity island 2 (SPI-2) effectors, as PFA-fixed and STMΔssaV fail to alter PD-L1 levels. We have further investigated the role of the SPI-2 effector SseL (a deubiquitinase) in PD-L1 upregulation, and our study reveals SseL to be crucial for upregulating PD-L1 in vitro as well as in vivo murine models. STMΔsseL exhibits colonization defects in secondary infection sites such as the liver and spleen. Notably, STMΔsseL-infected mice show earlier mortality associated with heightened inflammation. Mechanistically, SseL stabilizes β-catenin, which translocates to the nucleus and leads to PD-L1 transcription, which is abrogated by the β-catenin/TCF inhibitor FH535. Collectively, our study elucidates the mechanism by which Salmonella mediates immune suppression through PD-L1 upregulation.","PeriodicalId":501010,"journal":{"name":"The Journal of Infectious Diseases","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Infectious Diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/infdis/jiaf131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The upregulation of PD-L1 by various pathogens is a recognized strategy to evade the adaptive immune response. Salmonella infection also upregulates PD-L1 levels; however, the underlying mechanism remains unclear. Our study reveals that this upregulation is mediated by Salmonella pathogenicity island 2 (SPI-2) effectors, as PFA-fixed and STMΔssaV fail to alter PD-L1 levels. We have further investigated the role of the SPI-2 effector SseL (a deubiquitinase) in PD-L1 upregulation, and our study reveals SseL to be crucial for upregulating PD-L1 in vitro as well as in vivo murine models. STMΔsseL exhibits colonization defects in secondary infection sites such as the liver and spleen. Notably, STMΔsseL-infected mice show earlier mortality associated with heightened inflammation. Mechanistically, SseL stabilizes β-catenin, which translocates to the nucleus and leads to PD-L1 transcription, which is abrogated by the β-catenin/TCF inhibitor FH535. Collectively, our study elucidates the mechanism by which Salmonella mediates immune suppression through PD-L1 upregulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Salmonella effector SseL induces PD-L1 up-regulation and T cell inactivation via β-catenin signalling axis Recovery of Antibody Immunity After a Resurgence of Respiratory Syncytial Virus Infections Estimated Efficacy of TAK-003 Against Asymptomatic Dengue Infection in Children/Adolescents Participating in the DEN-301 Trial in Asia Pacific and Latin America Identification of Coccidioidomycosis immunoreactive peptides that recall T-cell responses indicating past exposure Non-invasive monitoring of humoral immune responses in men with acute Chlamydia trachomatis urethral infection using first-catch urine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1